
http://www.tuto rialspo int.co m/pytho n/pytho n_mo dules.htm Copyrig ht © tutorialspoint.com

PYTHON MODULES

A module allows you to log ically org anize your Python code. Grouping related code into a module makes the
code easier to understand and use. A module is a Python object with arbitrarily named attributes that you can bind
and reference.

Simply, a module is a file consisting of Python code. A module can define functions, classes and variables. A
module can also include runnable code.

Example:

The Python code for a module named aname normally resides in a file named aname.py. Here's an example of a
simple module, support.py

def print_func(par):
 print "Hello : ", par
 return

The import Statement:

You can use any Python source file as a module by executing an import statement in some other Python source
file. The import has the following syntax:

import module1[, module2[,... moduleN]

When the interpreter encounters an import statement, it imports the module if the module is present in the search
path. A search path is a list of directories that the interpreter searches before importing a module. For example,
to import the module hello.py, you need to put the following command at the top of the script:

#!/usr/bin/python

Import module support
import support

Now you can call defined function that module as follows
support.print_func("Zara")

When the above code is executed, it produces the following result:

Hello : Zara

A module is loaded only once, reg ardless of the number of times it is imported. This prevents the module
execution from happening over and over ag ain if multiple imports occur.

The from...import Statement

Python's from statement lets you import specific attributes from a module into the current namespace. The
from...import has the following syntax:

from modname import name1[, name2[, ... nameN]]

For example, to import the function fibonacci from the module fib, use the following statement:

from fib import fibonacci

This statement does not import the entire module fib into the current namespace; it just introduces the item
fibonacci from the module fib into the g lobal symbol table of the importing module.

The from...import * Statement:

http://www.tutorialspoint.com/python/python_modules.htm

It is also possible to import all names from a module into the current namespace by using the following import
statement:

from modname import *

This provides an easy way to import all the items from a module into the current namespace; however, this
statement should be used sparing ly.

Locating Modules:

When you import a module, the Python interpreter searches for the module in the following sequences:

The current directory.

If the module isn't found, Python then searches each directory in the shell variable PYTHONPATH.

If all else fails, Python checks the default path. On UNIX, this default path is normally
/usr/local/lib/python/.

The module search path is stored in the system module sys as the sys.path variable. The sys.path variable
contains the current directory, PYTHONPATH, and the installation-dependent default.

The PYTHONPATH Variable:

The PYTHONPATH is an environment variable, consisting of a list of directories. The syntax of PYTHONPATH
is the same as that of the shell variable PATH.

Here is a typical PYTHONPATH from a Windows system:

set PYTHONPATH=c:\python20\lib;

And here is a typical PYTHONPATH from a UNIX system:

set PYTHONPATH=/usr/local/lib/python

Namespaces and Scoping :

Variables are names (identifiers) that map to objects. A namespace is a dictionary of variable names (keys) and
their corresponding objects (values).

A Python statement can access variables in a local namespace and in the global namespace. If a local and a g lobal
variable have the same name, the local variable shadows the g lobal variable.

Each function has its own local namespace. Class methods follow the same scoping rule as ordinary functions.

Python makes educated g uesses on whether variables are local or g lobal. It assumes that any variable assig ned
a value in a function is local.

Therefore, in order to assig n a value to a g lobal variable within a function, you must first use the g lobal statement.

The statement global VarName tells Python that VarName is a g lobal variable. Python stops searching the local
namespace for the variable.

For example, we define a variable Money in the g lobal namespace. Within the function Money, we assig n Money
a value, therefore Python assumes Money as a local variable. However, we accessed the value of the local
variable Money before setting it, so an UnboundLocalError is the result. Uncommenting the g lobal statement
fixes the problem.

#!/usr/bin/python

Money = 2000
def AddMoney():
 # Uncomment the following line to fix the code:
 # global Money

 Money = Money + 1

print Money
AddMoney()
print Money

The dir() Function:

The dir() built-in function returns a sorted list of string s containing the names defined by a module.

The list contains the names of all the modules, variables and functions that are defined in a module. Following is a
simple example:

#!/usr/bin/python

Import built-in module math
import math

content = dir(math)

print content;

When the above code is executed, it produces the following result:

['__doc__', '__file__', '__name__', 'acos', 'asin', 'atan',
'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp',
'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log',
'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh',
'sqrt', 'tan', 'tanh']

Here, the special string variable __name__ is the module's name, and __file__ is the filename from which the
module was loaded.

The globals() and locals() Functions:

The globals() and locals() functions can be used to return the names in the g lobal and local namespaces
depending on the location from where they are called.

If locals() is called from within a function, it will return all the names that can be accessed locally from that function.

If g lobals() is called from within a function, it will return all the names that can be accessed g lobally from that
function.

The return type of both these functions is dictionary. Therefore, names can be extracted using the keys()
function.

The reload() Function:

When the module is imported into a script, the code in the top-level portion of a module is executed only once.

Therefore, if you want to reexecute the top-level code in a module, you can use the reload() function. The
reload() function imports a previously imported module ag ain. The syntax of the reload() function is this:

reload(module_name)

Here, module_name is the name of the module you want to reload and not the string containing the module name.
For example, to reload hello module, do the following :

reload(hello)

Packag es in Python:

A packag e is a hierarchical file directory structure that defines a sing le Python application environment that
consists of modules and subpackag es and sub-subpackag es, and so on.

Consider a file Pots.py available in Phone directory. This file has following line of source code:

#!/usr/bin/python

def Pots():
 print "I'm Pots Phone"

Similar way, we have another two files having different functions with the same name as above:

Phone/Isdn.py file having function Isdn()

Phone/G3.py file having function G3()

Now, create one more file __init__.py in Phone directory:

Phone/__init__.py

To make all of your functions available when you've imported Phone, you need to put explicit import statements in
__init__.py as follows:

from Pots import Pots
from Isdn import Isdn
from G3 import G3

After you've added these lines to __init__.py, you have all of these classes available when you've imported the
Phone packag e.

#!/usr/bin/python

Now import your Phone Package.
import Phone

Phone.Pots()
Phone.Isdn()
Phone.G3()

When the above code is executed, it produces the following result:

I'm Pots Phone
I'm 3G Phone
I'm ISDN Phone

In the above example, we have taken example of a sing le functions in each file, but you can keep multiple functions
in your files. You can also define different Python classes in those files and then you can create your packag es out
of those classes.

	PYTHON MODULES
	Example:
	The import Statement:
	The from...import Statement
	The from...import * Statement:
	Locating Modules:
	The PYTHONPATH Variable:
	Namespaces and Scoping:
	The dir() Function:
	The globals() and locals() Functions:
	The reload() Function:
	Packages in Python:

