Nuclear Chemistry

Nuclear chemistry is the study of atomic nuclei and the changes they undergo. It plays a critical role in fields such as medicine, energy production, and environmental research.

Introduction

- Definition of nuclear chemistry
- Importance of nuclear chemistry in various fields

Nuclear Reactions

Basics of Nuclear Reactions

Nuclear reactions involve changes in atomic nuclei, including the formation or decay of isotopes.

2

1

Different Types of Nuclear Reactions

Examples include nuclear fission, nuclear fusion, and radioactive decay.

Nuclear Decay

Radioactive Decay

1

2

Radioactive decay is the spontaneous breakdown of atomic nuclei, emitting radiation in the process.

Types of Radioactive Decay

Common types include alpha decay, beta decay, and gamma decay.

😆 Made with Gamma

Half-Life

1

Definition of Half-Life

Half-life is the time it takes for half of a radioactive substance to decay.

2 Calculation of Half-Life

Half-life can be calculated using the decay constant and the initial amount of a radioactive substance.

Nuclear Energy

1 Nuclear Fission

Nuclear fission is a process where the nucleus of an atom is split, releasing a large amount of energy. **Nuclear Fusion**

2

Nuclear fusion is a process where two atomic nuclei combine to

