Properties

1. Aromaticity

Properties

1. Aromaticity

- Pyridine have 5 C and 1 N, all are sp² hybridized
- sp^2 hybridization is planar, it makes a planar pyridine ring structure.
- Each ring atoms also contains unhybridized p orbital that is perpendicular to the plane of σ bonds (plane of ring).
- Here p orbitals are parallel to each other, so overlapping btwn p orbitals is possible.
- the total nu of non bonding e- are 6 (5 of five C, 1 from N)
- The resonance of 6 e- follows the Hückel's rule
- So

Properties

2. Basicity

Pyridine is more basic than pyrrole

Properties

2. Basicity

Pyridine is more basic than pyrrole

Properties

2. Basicity

Pyridine is more basic than pyrrole

- Basicity depends on availability of lone pair.
- Pyridine N have lone pair of ē in same plane of pyridine hybridized orbitals plane → So it is not participating to resonance phenomena → lone pair is readily available for acid-base reaction.
- Pyrrole N have lone pair of ē perpendicular to plane of pyridine hybridized orbitals plane. → it <u>participates in resonance</u> (delocalization of lone pair) → not readily available for acid-base reaction.
- As lone pair of ē of pyridine are readily available than pyrrole...
 ... Pyridine is more basic than pyrrole

Properties

Basicity

Pyridine is less basic than <u>aliphatic amines</u>

- lone pair of <u>ē</u> more closely held toward more electro-ve N → less available for acid-base reaction.
 As lone pair of <u>ē</u> is <u>not readily available</u> in pyridine, it is less basic
- As lone pair of ē is <u>not readily available</u> in pyridine, it is less basic than aliphatic amines.

Properties

- 3. Tautomerism
- Tautomeric structures involve when pyridine substituted at 2nd / 4th
 position with groups such as -XH (X = O,N or S)

- 4. Hydrogen bonding
- Pyridine is water soluble

Synthesis

- Hantzsch pyridine synthesis
- Condensation of an aldehyde with two moles of a β-dicarbonyl compound and ammonia.

Synthesis

Hantzsch pyridine synthesis

Mechanism

Step 1: Knoevenagel Condensation between the β-ketoester and aldehyde

Step 2: Formation of the ester enamine

Synthesis

Hantzsch pyridine synthesis

Mechanism

Step 3: Formation of the dihydropyridine

Synthesis

3 - alkoxy - enones

- 2. The Guareschi Synthesis
- Modification of Hantzsch synthesis, use of cyanoacetamide as the nitrogen - containing component.

enenitrile

Synthesis

- 3. From 1,5 Dicarbonyl Compounds
- Ammonia reacts with 1,5 dicarbonyl compounds to give 1,4 dihydropyridines, which are easily dehydrogenated to pyridines.

Synthesis

4. From Oxazoles Kondrat'eva pyridine synthesis

Reactions

- 1. Electrophilic addition to N
- a. Protonation (basic property)

b. N-alkylation

Reactions

Imidazole is approximately 100 times more basic than pyridine.

 Protonation of imidazole yields an ion that is stabilized by the electron delocalization

Reactions

Electrophilic substitution to C
 Pyridine gives electrophilic substitution reaction at 3rd position.

N is electro-ve, so +ve charge on N destabilize structure → here attack at C2, C4 generates N+ intermediates → less favourable → only C3 is favourable as it can not generate N+ intermediate.

Reactions

- Electrophilic substitution to C
- a. Nitration

- b. sulphonation
- Pyridine is very resistant to sulfonation using concentrated sulfuric acid or oleum, addition of mercuric sulfate in catalytic quantities allows smooth sulfonation.

2 Electri

Reactions

Electrophilic substitution to C

c. Halogenation

- 3-Bromopyridine is produced in good yield by the action of bromine in oleum.
- 3-Chloropyridine can be produced by chlorination in the presence of aluminium chloride.

Reactions

Nucleophilic substitution

-ve charge on N. thus...

Heterocyclic Compounds _ AZC_ 2010 _Organic Chemistry_ Pharmacy

Reactions

3. Nucleophilic substitution

Chichibabin rxn

Rxn of pyridine with sodamide at high temp.

Mechanism

Reactions

- Pyridine as Nucleophilic catalyst
- Used as catalyst for acylating phenols, alcohols and amines using acyl chlorides / anhydrides.

Reactions

5. Reduction

Medicinal uses

(1) Antitubercular Agent : Isoniazid

used in myasthenia gravis

(2) Antibacterial agent: Sulfapyridine, Sulfasalazine

 H_2N

Medicinal uses

(4) Proton Pump Inhibitors: Omeprazole, Lansoprazole, Pantoprazole, Rabeprazole - used in peptic ulcer

PPI	×	Y	Z	R
Omeprazole	CH ₃	CH ₃ O	CH ₃	CH ₃ O
Lansoprazole	CH ₃	CF ₃ CH ₂ O	Н	Н
Pantoprazole	CH ₃ O	CH₃O ¯	Н	CHF ₂ O
Rabeprazole	CH ₃	CH ₃ OCH ₂ CH ₂ CH ₂ O	Н	Н

Medicinal uses

VITAMIN B3

NICOTINIC ACID NICOTINEAMIDE niacin is collective name for these compounds

Helps with digestion and digestive system health. Also helps with the processing of carbohydrates.

VITAMIN B6

PYRIDOXAL PHOSPHATE active form in mammalian tissues

Helps make some brain chemicals; needed for normal brain function. Also helps make red blood cells and immune system cells.