
Functions in Python

The indentation matters…
First line with less
indentation is considered to be
outside of the function definition.

Defining Functions

No header file or declaration of types of function or arguments

def get_final_answer(filename):
 “““Documentation String”””
 line1

 line2
 return total_counter

Function definition begins with “def.” Function name and its arguments.

The keyword ‘return’ indicates the
value to be sent back to the caller.

	
Colon.	

Python and Types

• Dynamic typing: Python determines the data
types of variable bindings in a program
automatically

• Strong typing: But Python’s not casual about
types, it enforces the types of objects

• For example, you can’t just append an integer
to a string, but must first convert it to a string

 x = “the answer is ” # x bound to a string
 y = 23 # y bound to an integer.

 print x + y # Python will complain!

Calling a Function

• The syntax for a function call is:
 >>> def myfun(x, y):
 return x * y
 >>> myfun(3, 4)
 12

• Parameters in Python are Call by Assignment
• Old values for the variables that are parameter

names are hidden, and these variables are
simply made to refer to the new values

• All assignment in Python, including binding
function parameters, uses reference semantics.

Functions without returns

• All functions in Python have a return value,
even if no return line inside the code

• Functions without a return return the special
value None
• None is a special constant in the language
• None is used like NULL, void, or nil in other

languages
• None is also logically equivalent to False
• The interpreter’s REPL doesn’t print None

Function overloading? No.

• There is no function overloading in Python
• Unlike C++, a Python function is specified by

its name alone
The number, order, names, or types of arguments
cannot be used to distinguish between two functions
with the same name

• Two different functions can’t have the same
name, even if they have different arguments

• But: see operator overloading in later slides
(Note: van Rossum playing with function overloading for the future)

Default Values for Arguments
• You can provide default values for a

function’s arguments
• These arguments are optional when the

function is called

>>> def myfun(b, c=3, d=“hello”):
 return b + c

>>> myfun(5,3,”hello”)
>>> myfun(5,3)
>>> myfun(5)

All of the above function calls return 8

Keyword Arguments
• Can call a function with some/all of its arguments

out of order as long as you specify their names
>>> def foo(x,y,z): return(2*x,4*y,8*z)
>>> foo(2,3,4)
(4, 12, 32)
>>> foo(z=4, y=2, x=3)
(6, 8, 32)
>>> foo(-2, z=-4, y=-3)
(-4, -12, -32)

• Can be combined with defaults, too
>>> def foo(x=1,y=2,z=3): return(2*x,4*y,8*z)
>>> foo()
(2, 8, 24)
>>> foo(z=100)
(2, 8, 800)

Functions are first-class objects
Functions can be used as any other

datatype, eg:
• Arguments to function
• Return values of functions
• Assigned to variables
• Parts of tuples, lists, etc

>>> def square(x): return x*x

>>> def applier(q, x): return q(x)

>>> applier(square, 7)
49

Lambda Notation

• Python’s lambda creates anonymous
functions
>>> applier(lambda z: z * 42, 7)

 14

• Note: only one expression in the lambda
body; its value is always returned
• Python supports functional programming

idioms: map, filter, closures,
continuations, etc.

Lambda Notation

Be careful with the syntax
>>> f = lambda x,y : 2 * x + y

>>> f
<function <lambda> at 0x87d30>

>>> f(3, 4)

10
>>> v = lambda x: x*x(100)

>>> v

<function <lambda> at 0x87df0>

>>> v = (lambda x: x*x)(100)
>>> v

10000

Example: composition
>>> def square(x):

 return x*x
>>> def twice(f):

 return lambda x: f(f(x))
>>> twice
<function twice at 0x87db0>

>>> quad = twice(square)
>>> quad

<function <lambda> at 0x87d30>
>>> quad(5)

625

Example: closure
>>> def counter(start=0, step=1):
 x = [start]

 def _inc():
 x[0] += step

 return x[0]

 return _inc
>>> c1 = counter()

>>> c2 = counter(100, -10)
>>> c1()

1
>>> c2()

90

map, filter, reduce
>>> def add1(x): return x+1
>>> def odd(x): return x%2 == 1
>>> def add(x,y): return x + y
>>> map(add1, [1,2,3,4])
[2, 3, 4, 5]
>>> map(+,[1,2,3,4],[100,200,300,400])
map(+,[1,2,3,4],[100,200,300,400])
 ^
SyntaxError: invalid syntax
>>> map(add,[1,2,3,4],[100,200,300,400])
[101, 202, 303, 404]
>>> reduce(add, [1,2,3,4])
10
>>> filter(odd, [1,2,3,4])
[1, 3]

Python
functional programming

Functions are first-class objects
Functions can be used as any other

datatype, eg:
• Arguments to function
• Return values of functions
• Assigned to variables
• Parts of tuples, lists, etc

>>> def square(x): return x*x

>>> def applier(q, x): return q(x)

>>> applier(square, 7)
49

Lambda Notation

Python’s lambda creates anonymous functions
>>> lambda x: x + 1
<function <lambda> at 0x1004e6ed8>
>>> f = lambda x: x + 1
>>> f
<function <lambda> at 0x1004e6f50>
>>> f(100)
101

Lambda Notation

Be careful with the syntax
>>> f = lambda x,y: 2 * x + y

>>> f
<function <lambda> at 0x87d30>

>>> f(3, 4)

10
>>> v = lambda x: x*x(100)

>>> v

<function <lambda> at 0x87df0>
>>> v = (lambda x: x*x)(100)

>>> v

10000

Lambda Notation Limitations

• Note: only one expression in the lambda
body; Its value is always returned
• The lambda expression must fit on one

line!
• Lambda will probably be deprecated in

future versions of python
Guido is not a lambda fanboy

Functional programming

• Python supports functional programming
idioms
• Builtins for map, reduce, filter, closures,

continuations, etc.
• These are often used with lambda

Example: composition
>>> def square(x):

 return x*x
>>> def twice(f):

 return lambda x: f(f(x))
>>> twice
<function twice at 0x87db0>

>>> quad = twice(square)
>>> quad

<function <lambda> at 0x87d30>
>>> quad(5)

625

Example: closure
>>> def counter(start=0, step=1):
 x = [start]

 def _inc():
 x[0] += step

 return x[0]

 return _inc
>>> c1 = counter()

>>> c2 = counter(100, -10)
>>> c1()

1
>>> c2()

90

map
>>> def add1(x): return x+1
>>> map(add1, [1,2,3,4])
[2, 3, 4, 5]
>>> map(lambda x: x+1, [1,2,3,4])
[2, 3, 4, 5]
>>> map(+, [1,2,3,4], [100,200,300,400])
map(+,[1,2,3,4],[100,200,300,400])
 ^
SyntaxError: invalid syntax

map
• + is an operator, not a function
• We can define a corresponding add function

>>> def add(x, y): return x+y
>>> map(add,[1,2,3,4],[100,200,300,400])
[101, 202, 303, 404]

• Or import the operator module
>>> from operator import *
>>> map(add, [1,2,3,4], [100,200,300,400])
[101, 202, 303, 404]
>>> map(sub, [1,2,3,4], [100,200,300,400])
[-99, -198, -297, -396]

filter, reduce
• Python has buiting for reduce and filter

>>> reduce(add, [1,2,3,4])
10
>>> filter(odd, [1,2,3,4])
[1, 3]
• The map, filter and reduce functions
are also at risk L

