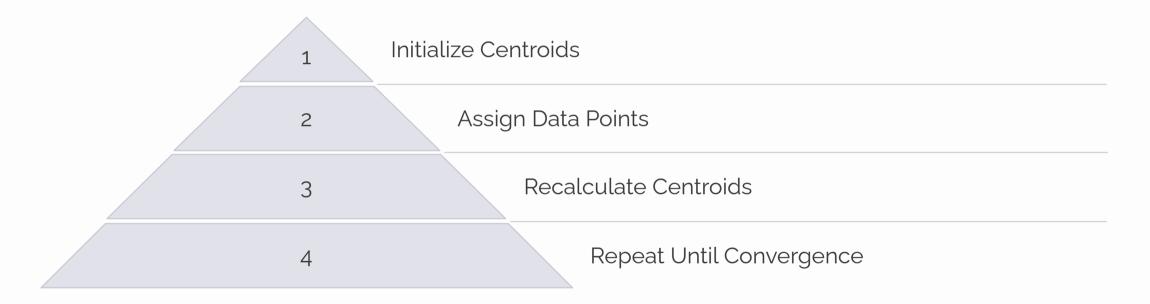
K-Means Clustering in Artificial Neural Networks

K-means clustering is an unsupervised learning algorithm that partitions data points into distinct clusters based on their similarity. This presentation delves into the key aspects of K-means, exploring its principles, benefits, applications, and limitations.

S by Simranjeet Kaur

Introduction to K-Means Clustering

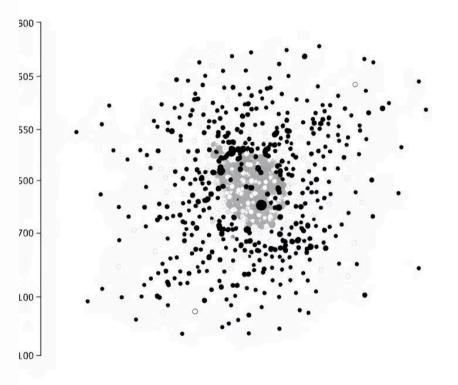
Unsupervised Learning


K-means is an unsupervised learning algorithm, meaning it does not require labeled data to learn patterns. It seeks to find natural groupings in the data.

Clustering Algorithm

The goal of K-means is to partition a set of data points into K distinct clusters. The algorithm aims to minimize the distance between data points within a cluster while maximizing the distance between clusters.

Objective and Working of K-Means Clustering


Advantages and Disadvantages of K-Means Clustering

Advantages

Simple and efficient, widely applicable, robust to noise.

Disadvantages

Sensitive to initial centroid selection, may struggle with nonspherical clusters, and can be computationally expensive for large datasets.

-Meaans Clustering

customer usel your naticar olloprertans, sheectifc clusteration ssee persional s, eactrol application, or thus and pallettle, or pattern.

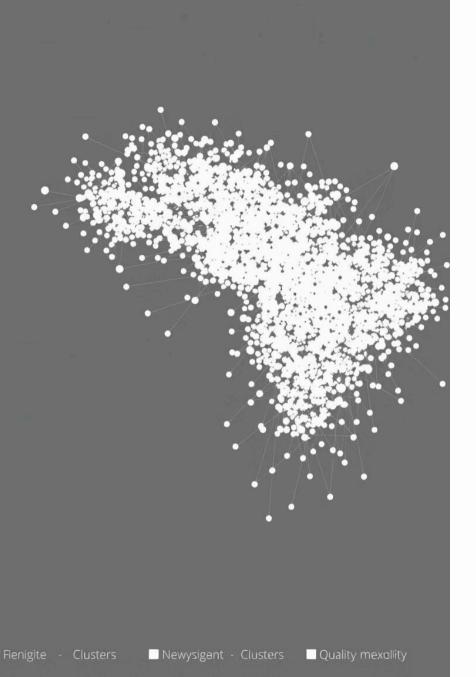
Compressiond antimal decction

Applications of K-Means Clustering

Customer Segmentation

Clustering customers based on their purchase history, demographics, and behavior can help businesses tailor marketing campaigns and offer personalized experiences.

Image Compression


K-means can be used to compress images by representing pixels with their closest cluster centers, reducing storage requirements.

 \bigcirc

Anomaly Detection

By identifying data points that are far from cluster centers, K-means can help detect outliers and unusual patterns that might indicate anomalies or fraud.

Clustering Evaluation Methods

1 Silhouette Score Measures the similarity of a data point to its own cluster compared to other clusters. 2

Dunn Index

Evaluates the ratio of minimum inter-cluster distance to maximum intracluster distance.

付 Made with Gamma

Calinski-Harabasz Index

3

Measures the ratio of between-cluster variance to within-cluster variance.

```
rifle. weer secrof pilaweric;
{
```

Kinull = despicement.(fis.28)
ptunnid diogetton (sall a/1.ya0ar.1);

```
rlaml = clusteins; 137.53) (0.11);
rallitincoreament.1:3J-2 (rinunJs.1);
```

ł.

chil hnd tonetunoncr.3); whiddnd.ispee-11);

KMeashic= clusewing; (jy.46)
1 entation clastanping (Vlat sode-11);
2 feyatinner-3):

K-Means Algorithm Implementation

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=3, random_state=0) kmeans.fit(X) labels = kmeans.labels_

🗯 Made with Gamma

Conclusion and Key Takeaways

K-means clustering is a versatile and widely used unsupervised learning algorithm with significant applications in various fields. Its simplicity, efficiency, and ability to uncover hidden patterns in data make it a valuable tool for data analysis and decision-making. However, it's crucial to consider its limitations and choose appropriate evaluation methods to ensure optimal results.

