
Control Statements in
Python
Control statements are essential for controlling the flow of execution in a

Python program. They allow you to make decisions, repeat actions, and

manage the order in which your code runs.

by Prabh Jit

https://gamma.app/?utm_source=made-with-gamma


Conditional Statements: if,
elif, else
Conditional statements allow you to execute different blocks of code based

on whether a certain condition is true or false. The most common

conditional statement is the `if` statement, followed by optional `elif` and

`else` clauses.

1 if

The `if` statement is used to

execute a block of code if a

condition is true.

2 elif

The `elif` statement is used to

execute a block of code if the

previous `if` or `elif` condition

is false, but the current

condition is true.

3 else

The `else` statement is used to execute a block of code if all previous

`if` and `elif` conditions are false.

https://gamma.app/?utm_source=made-with-gamma


Comparison Operators in Conditional Statements
Comparison operators are used to compare values and determine whether a condition is true or false. These operators are often

used in conjunction with conditional statements.

Operator Description

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

https://gamma.app/?utm_source=made-with-gamma


Nested Conditional
Statements
Nested conditional statements allow you to create more complex decision-

making structures. This involves placing one or more conditional statements

within another conditional statement.

1

Outer Condition

The outer conditional statement checks an initial condition.

2

Inner Condition

If the outer condition is true, the inner conditional statement is

executed. The inner condition checks a secondary condition.

3

Code Execution

The appropriate block of code within the nested structure is

executed based on the outcome of both conditions.

https://gamma.app/?utm_source=made-with-gamma


Loops: for, while

Loops are used to repeat a block of code multiple times. Python has two main types of loops: `for` loops and `while` loops.

for Loop

The `for` loop is used to iterate over a sequence of elements,

such as a list, tuple, or string.

Iterate over each element in the sequence1.

Execute the code within the loop for each element2.

while Loop

The `while` loop is used to execute a block of code repeatedly

as long as a condition remains true.

Check the condition before each iteration1.

Execute the code within the loop if the condition is true2.

Repeat the process until the condition becomes false3.

https://gamma.app/?utm_source=made-with-gamma


Break and Continue
Statements
The `break` and `continue` statements can be used to modify the behavior

of loops. These statements allow you to control the flow of execution within

loops.

break

The `break` statement

immediately exits the current

loop. It's useful for stopping a

loop prematurely based on a

specific condition.

continue

The `continue` statement skips

the remaining code within the

current iteration of the loop and

jumps to the beginning of the

next iteration. This allows you to

skip specific elements or

iterations within a loop.

https://gamma.app/?utm_source=made-with-gamma


Ternary Operator
The ternary operator is a concise way to write conditional expressions. It

provides a shorter syntax for choosing between two values based on a

condition.

Syntax

The general syntax is `condition ?

value_if_true : value_if_false`.

Example

```python result = "Even" if number

% 2 == 0 else "Odd" ```

https://gamma.app/?utm_source=made-with-gamma


Conclusion and Best
Practices
Control statements are fundamental to Python programming. By mastering

these statements, you can create flexible and dynamic programs.

1 Indentation

Use consistent indentation to

define code blocks within

control statements. This

ensures readability and

correct execution.

2 Comments

Add comments to your code

to explain the purpose of

control statements and the

logic behind your decisions.

3 Logic

Carefully plan the logic of your control statements to ensure they

achieve the desired results.

https://gamma.app/?utm_source=made-with-gamma

