

Function of bounded variation

Explore the fascinating world of functions with bounded variation and discover their applications in numerical algorithms and integration. Let's dive in!

Examples of functions with bounded variation

Step runction . Example i

to How

t: Water in Tub

Sinusoidal Wave

A smooth and periodic function that oscillates between constant maxima and minima.

Step Function

System starts at a constant value, then steps either up or down to another constant value Example : We delay turning on

Step function starts off at a constant

Step up to +3 at Time = 5

Stock : Water in the tub - Until the Time =5, the stock stays at zero, and when the flow increases to 3, the stock accumulates at rate of 3 units per unit time

the faucet

value 0.

A function that jumps instantly between different constant values.

Sawtooth Wave

A function that ramps up linearly and then drops sharply, creating a sawtooth pattern.

Definition of bounded variation

A function is said to have bounded variation if its total variation over any interval is finite. In other words, the function does not fluctuate wildly.

Properties of bounded variation functions

1

Partition Independence

The total variation of a function remains unchanged when the interval is partitioned into subintervals.

Characterization

A function f is of bounded variation if and only if it can be expressed as the difference of two increasing functions.

3 Multiplicative Property

If g is a bounded variation function and f is a continuous function, then the product f*g is also of bounded variation.

Relation of bounded variation to integration

1

2

3

Riemann-Stieltjes Integral

The Riemann-Stieltjes integral generalizes the Riemann integral and is well-suited for functions of bounded variation.

Integration Formula

Functions of bounded variation can be easily integrated using the integration formula.

Lebesgue Integration

Functions of bounded variation are Lebesgue integrable, allowing for more general integration techniques.

🧯 Made with Gamma

Applications of bounded variation functions

Signal Processing

Bounded variation functions are extensively used in signal processing applications like compression and denoising.

Image Analysis

Functions with bounded variation are valuable tools in image analysis for edge detection and image enhancement.

Finance

Bounded variation functions play a crucial role in finance for modeling stock prices and calculating derivatives.

Examples of numerical algorithms that use bounded variation

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for $j = 1$ and $j = 0$)
}

Gradient Descent

This optimization algorithm leverages bounded variation functions to iteratively search for the minimum of a cost function.

Finite Element Method

Bounded variation functions are a fundamental component of this numerical method used for solving partial differential equations.

Curve Fitting Algorithm

Curve Fitting Algorithm

Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints.

Curve fitting can involve either interpolation, where an exact fit to the data is required, or smoothing, in which a "smooth' function is constructed that approximately fits the data.

A related topic is regression analysis, which focuses more on questions of statistical inference such as how much uncertainty is present in a curve that is fit to data observed with random errors.

Fitted curves can be used as an aid for data visualization, to infer values of a function where no data are available, and to summarize the relationships among two or more variables.

Extrapolation refers to the use of a fitted curve beyond the range of the observed data, and is subject to a greater degree of uncertainty since it may reflect the

Curve Fitting

Algorithms for fitting curves to data rely on bounded variation functions to find the best fit.

Conclusion

Functions with bounded variation offer a rich mathematical framework, serving as building blocks for diverse applications in various fields. Explore their fascinating properties and unleash their potential!

