Properties

1. Aromaticity

Properties

1. Aromaticity

- Thiophene have 4 C and 1 S, all are sp^2 hybridized
- sp^2 hybridization is planar, it makes a planar thiophene ring structure.
- Each ring atom also contains unhybridized p orbital that is perpendicular to the plane of σ bonds (plane of ring).

Here p orbitals are parallel to each other, so overlapping btwn p

- orbitals is possible.
- the total nu of non bonding e- are 6 (4 of four C, 2 from one S)
- The resonance of 6 e- follows the Hückel's rule
- So the thiophene is aromatic.

Properties

1. Aromaticity

Furan is less aromatic / thiophene is more aromatic

- This order depends on order of electronegativity of heteroatoms
- The more e-ve is the atom → the more tightly holds its lone pair of e → more reduce the ease of delocalization (aromaticity).
- So most e-ve O in furan most decrease aromaticity.
 & Least e-ve S in thiophene least decrease aromaticity.
- Thus

Synthesis

- Paal-Knorr synthesis of thiophene
- The condensation of 1,4-dicarbonyl compounds with sulfur sources gives thiophene.

Synthesis

1. Paal-Knorr synthesis of furan

Mechanism

Synthesis

- From sod. succinate
- Laboratory synthesis
- Heating a mix. of sod. succinate and phosphorus trisulfide.

Synthesis

- 3. Hinsberg Synthesis
- Condensation between a 1,2 dicarbonyl compound and diethyl thiodiacetate in presence of strong base give thiophene 2,5 diacids (diketone)

compound

Ph
$$C_2H_5O$$
 OC_2H_5 C_2H_5O OC_2H_5 C_2H_5O OC_2H_5 benzil diethyl-thiodiacetate substituted thiophene

Reactions

Electrophilic substitution

thiophene undergoes electrophilic substitution reaction at 2nd position

- 2 reasons...
- C2 attack gives more resonance contributing structures than C3.
- Extra stable contributing structure generates upon C2 attack

Reactions

- 1. Electrophilic substitution
- Very strongly acidic conditions lead to acid catalysed polymerization.
- The action of hot phosphoric acid on thiophene leads to a trimer.

Reactions

1. Electrophilic substitution

Reactions

2. Reduction

Reactions

3. reaction

J. Tedetion

Heterocyclic Compounds _ AZC_

2018

Medicinal uses

(1) Sitaxsentan: Cardiovascular Agent, used in pulmonary artery hypertension

(2) Tiagabine: Anticonvulsant Agent, used in the treatment of epilepsy

Medicinal uses

(3) Articaine: Anesthetic Agent