« = Chapter 2 Assemblers
= % --2.4 Assembler Design Options

L L

“.* Qutline

s One-pass assemblers
= Multi-pass assemblers
= Two-pass assembler with overlay structure

L L

“. “ Load-and-Go Assembler

= Load-and-go assembler generates their object code
In memory for iImmediate execution.

= No object program is written out, no loader is needed.

= Itis useful in a system with frequent program
development and testing
= Theéefficiency of the assembly process is an important
consideration.
= Programs are re-assembled nearly every time they
are run, efficiency of the assembly process is an
Important consideration.

L L

“.* One-Pass Assemblers

= Scenario for one-pass assemblers

= Generate their object code in memory for immediate execution —
load-and-go assembler

= External storage for the intermediate file between two passesis
dow or isinconvenient to use

= Main problem - Forward references

= Dataitems
= Labelson instructions

= Solution
= Requirethat all areas be defined before they are referenced.
= Itispossble, although inconvenient, to do so for data items.

= Forward jump to instruction items cannot be easily eliminated.
« Insert (label, address to be nodified) to
SYMI'AB
« Usually, address to be nodified is stored in a
| i nked- 11 st 4

r

. . Sample program for a one-pass assembler

—k

A Figure 2.18, pp. 94

Line Loc Source statement Object code

0 1000 COPY START 1000

2§ 1000 EQOF BYTE C"EOF’ 454F46
2 1003 THREE WORD 3 000003
3 1006 ZERO WORD 0 000000
4 1009 RETADR RESW 1

o 100C LENGTH RESW 1

6 100F BUFFER RESB 4096

e .

10 200F FIRST STL RETADR 141009
15 2012 CLOOP JSUB RDREC 48203D
20 20%5 LDA LENGTH 00100C
2% 2018 COMP ZERO 281006
30 201B JEQ ENDFIL 302024
35 201E JS WRREC 482062
40 2021 CLOOP 302012
45 2024 ENDFIL LDA EQOF 001000
50 2027 STA BUFFER O0C100F
20 202A LDA THREE 001003
60 202D STA LENGTH 0C100C
65 2030 JSUB WRREC 482062
70 2033 LDL RETADR 081009
PO 2036 RSUB 4C0000

110

. Forward Reference
“.* In One-pass Assembl er

= Omits the operand address if the symbol has not yet been
defined

= Enters this undefined symbol into SYMTAB and indicates that it
IS undefined

= Adds the address of this operand address to a list of forward
references associated with the SYMTAB entry

= When the definition for the symbol is encountered, scans the
reference list and inserts the address.

= At the end of the program, reports the error if there are still
SYMTAB entries indicated undefined symbols.
= For Load-and-Go assembler

= Search SYMTAB for the symbol named in the END statement and jumps
to this location to begin execution if thereis no error

. . Object Code in Memory and SYMTAB
" Figure 2.19(a), pp.95

After scanning line 40 of the program in Fig. 2.18

Memory
address Contents Symbol Value
1000 454F4600 00030000 OOXXXXXX XXXXXXXX LENGTH [100C
1010 AXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX RDREC 216 »{ 2013
L e
> —THREE | 1003
[]
2000 XXXXXX XXXXXXXX XXXxxxl4 ZERO 1006
2010 100948-— -400100C 28100630 |---48--| | =
2020 3c2012 ,\—WRF!EV k | @epppy 201F
; —EOE___ 1000
L]
' ENDFIL | * o\ﬁt201c

RETADR | 1009

BUFFER | 100F

CLOOP |2012

FIRST 200F

. . Object Codein Memory and SYMTAB

_“.* Figure 2.19(b), pp.96

After scanning line 160 of the program in Fig. 2.18

Memory
address Contents
1000 454F4600 00030000 OOXXXXXX XXXXXXXX
1010 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
L]
L]
L]
2000 XXXXXXXX X XXXXXXXX XXxxxxl4
2010 10094820 3D00100C 28100630 202444::
2020 ——3C2012 0010000C 100F
2030 48——— 4C00 OOF10010 00041006
2040 O01006E0 20393020 43D82039 28100630
2050 90 OF

2031

Symbol Value

LENGTH | 100C

RDREC | 203D

THREE | 1003

ZERO 1006

| WRREC 1% 201F
EOF 1000

| ENDRIL__| 2024

RETADR | 1009

BUFFER | 100F

CLOOP | 2012

FIRST 200F

W 203A

INPUT ?039\\
EXIT % | @l 2050
RLOOP | 2043

_ . |If One-Pass Assemblers Need to Produce
“.* Object Codes

= If the operand contains an undefined symbol, use 0
as the address and write the Text record to the object
program.

s Forward references are entered into lists as In the
load-and-go assembler.

= When the definition of a symbol is encountered, the
assembler generates another Text record with the
correct operand address of each entry in the
reference list.

= When loaded, the incorrect address O will be updated
by the latter Text record containing the symbol
definition.

.+ Object code generated by one-pass assembler
« " Figure 2.18, pp.97

%FOPY ‘90100q90107A
%9010099%&54F4g90000%900000
39020053%&&100%&8000000l009@81006300000480009@02012

T00201C022024
T002024190010000C100E0010030C100C4800000810094C0000F1001000

%90201102203D

TANENAY

%902032&%94100@901009@0203%?0204%?8203%?8100§§0000g@4900530203%982043
29020599%@053

TOOZOS%@;&OIOOQ&COOOQ@S

TOOZOlEP%@OﬁZ

T002031A02A2062
T00206%G%P4100@@0206%@0206%@0900§P0206%?ClOOgéBZOG%&COOOO

%POZOOF

>l >

10

L L

“.* Multi-Pass Assemblers

= For a two pass assembler, forward references in
symbol definition are not allowed:

ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

= Symbol definition must be completed in pass 1.
= Prohibiting forward references in symbol
definition is not a serious inconvenience.

= Forward references tend to create difficulty for a person
reading the program.

11

L L

“.* Implementation

= For a forward reference in symbol definition, we store

In the SYMTAB:
= The symbol name

= The defining expression
= The number of undefined symbols in the defining expression
= The undefined symbol (marked with a flag *)

associated with a list of symbols depend on this
undefined symbol.

= When a symbol is defined, we can recursively
evaluate the symbol expressions depending on the
newly defined symbol.

12

.« Multi-pass assembler example
" Figure 2.21, pp. 99-101

. . f

of undefined symbolsin the = HALFSZ EQU MAXLEN/ 2

defining expression 2 MAXLEN EQU BUFEND-BUFFER
3 PREVBT EQU BUFFER-1

The defi Di ng expression

4 BUFFER RESB 4096

v 5 BUFEND EQU X
HALFSZ [&1| MAXLEN/2 0

Depending list
MAXLEN | % o+—pp! HALFSZ | 0

T

Undefined symbol

.« Multi-pass assembler example
" Figure 2.21, pp. 99-101

BUFEND | | o—»| mMaxLen [o BUFEND | * o+ MAXLEN | 0
HALFSZ |&1| MAXLEN/2 0 HALFSZ |&1| MAXLEN/2 0
PREVBT |&1|BUFFER-1 0
MAXLEN |&2| BUFEND-BUFFER o~—p| HALFSZ |0 MAXLEN |&2 | BUFEND-BUFFER o——| HALFSZ |0
BUFFER | ¥ & »| MAXLEN | 0 BUFFER | * o—+—P| MAXLEN | =9 PREVBT

2 MAXLEN EQU BUFEND-BUFFER 3 PREVBT EQU BUFFER-1

. . Multi-pass assembler example

_*.* Figure 2.21, pp. 99-101

BUFEND

e

MAXLEN

BUFEND

2034

HALFSZ

&1| MAXLEN/2

PREVBT

1033

HALFSZ

800

PREVBT

1033

MAXLEN

&1| BUFEND-BUFFER

HALFSZ

MAXLEN

1000

BUFFER

1034

4 BUFFER RESB 4096

BUFFER

1034

5 BUFEND

EQU

*

15

. . Two-pass assembler
“.“ with overlay structure

= When memory is not enough

= Pass 1 and pass 2 are never required at the sametime
= Three segments

= Overlay program

Shared table :
. Driver

& Routines Shared table

Pass 1 table ‘ & Routines

& Routines

? | Pass 1 table Pass 2 table

ek t-a o & Routines & Routines
& Routines

