
�

Chapter 2 Assemblers
-- 2.4 Assembler Design Options

�

Outline

� One-pass assemblers
� Multi-pass assemblers
� Two-pass assembler with overlay structure

�

Load-and-Go Assembler

� Load-and-go assembler generates their object code
in memory for immediate execution.

� No object program is written out, no loader is needed.
� It is useful in a system with frequent program

development and testing
� The efficiency of the assembly process is an important

consideration.

� Programs are re-assembled nearly every time they
are run, efficiency of the assembly process is an
important consideration.

�

One-Pass Assemblers

� Scenario for one-pass assemblers
� Generate their object code in memory for immediate execution –

load-and-go assembler
� External storage for the intermediate file between two passes is

slow or is inconvenient to use

� Main problem - Forward references
� Data items
� Labels on instructions

� Solution
� Require that all areas be defined before they are referenced.
� It is possible, although inconvenient, to do so for data items.
� Forward jump to instruction items cannot be easily eliminated.

� Insert (label, address_to_be_modified) to
SYMTAB

� Usually, address_to_be_modified is stored in a
linked-list

�

Sample program for a one-pass assembler
Figure 2.18, pp. 94

�

Forward Reference
in One-pass Assembler

� Omits the operand address if the symbol has not yet been
defined

� Enters this undefined symbol into SYMTAB and indicates that it
is undefined

� Adds the address of this operand address to a list of forward
references associated with the SYMTAB entry

� When the definition for the symbol is encountered, scans the
reference list and inserts the address.

� At the end of the program, reports the error if there are still
SYMTAB entries indicated undefined symbols.

� For Load-and-Go assembler
� Search SYMTAB for the symbol named in the END statement and jumps

to this location to begin execution if there is no error

�

Object Code in Memory and SYMTAB
Figure 2.19(a), pp.95

�	
��
��������
����
��
�	

��
�������
��
����
����

�

Object Code in Memory and SYMTAB
Figure 2.19(b), pp.96

�	
��
��������
����
���
�	

��
�������
��
����
����

�

If One-Pass Assemblers Need to Produce
Object Codes

� If the operand contains an undefined symbol, use 0
as the address and write the Text record to the object
program.

� Forward references are entered into lists as in the
load-and-go assembler.

� When the definition of a symbol is encountered, the
assembler generates another Text record with the
correct operand address of each entry in the
reference list.

� When loaded, the incorrect address 0 will be updated
by the latter Text record containing the symbol
definition.

��

Object code generated by one-pass assembler
Figure 2.18, pp.97

��

Multi-Pass Assemblers

� For a two pass assembler, forward references in
symbol definition are not allowed:

ALPHA EQU BETA

BETA EQU DELTA

DELTA RESW 1

� Symbol definition must be completed in pass 1.

� Prohibiting forward references in symbol
definition is not a serious inconvenience.
� Forward references tend to create difficulty for a person

reading the program.

��

Implementation

� For a forward reference in symbol definition, we store
in the SYMTAB:
� The symbol name

� The defining expression

� The number of undefined symbols in the defining expression

� The undefined symbol (marked with a flag *)
associated with a list of symbols depend on this
undefined symbol.

� When a symbol is defined, we can recursively
evaluate the symbol expressions depending on the
newly defined symbol.

��

Multi-pass assembler example
Figure 2.21, pp. 99-101

of undefined symbols in the
defining expression

The defining expression

Depending list

Undefined symbol

��

Multi-pass assembler example
Figure 2.21, pp. 99-101

2 MAXLEN EQU BUFEND-BUFFER 3 PREVBT EQU BUFFER-1

��

Multi-pass assembler example
Figure 2.21, pp. 99-101

4 BUFFER RESB 4096 5 BUFEND EQU *

��

Two-pass assembler
with overlay structure

� When memory is not enough
� Pass 1 and pass 2 are never required at the same time
� Three segments
� Overlay program

������

� ��

!
"�#
����

$���
�

� ��

!
"�#
����

$���
�

� ��

!
"�#
����

������

� ��

!
"�#
����

$���
�

� ��

!
"�#
����

$���
�

� ��

!
"�#
����

%��&��

