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Overview

• Discuss characteristics and 
the generation of random 
numbers.

• Subsequently, introduce 
tests for randomness:tests for randomness:
• Frequency test
• Autocorrelation testAutocorrelation test
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Overview

• Historically
• Throw dices
• Deal out cards
• Draw numbered balls
• Use digits of π
• Mechanical devices (spinning disc, etc.)
• Electric circuits• Electric circuits

• Electronic Random Number Indicator (ERNIE)

• Counting gamma rays

• In combination with a computer
• Hook up an electronic device to the computer

d bl f d b• Read-in a table of random numbers
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Pseudo-Random NumbersPseudo Random Numbers
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Pseudo-Random Numbers

• Approach: Arithmetically generation (calculation) of 
random numbers

• “Pseudo”, because generating numbers using a known 
method removes the potential for true randomness.

Any one who considers arithmetical methods ofAny one who considers arithmetical methods of 
producing random digits is, of course, in a state of 
sin. For, as has been pointed out several times, 
there is no such thing as a random number — there g
are only methods to produce random numbers, and 
a strict arithmetic procedure of course is not such a 
method.

John von Neumann, 1951
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Pseudo-Random Numbers

… probably … can not be justified, but should 
merely be judged by their results. Some statistical 
study of the digits generated by a given recipe 
should be made, but exhaustive tests are 
impractical. If the digits work well on one problem, 
they seem usually to be successful with others of the 
same type.

John von Neumann, 1951

G l  T  d    f b  i  [0 1] th t • Goal: To produce a sequence of numbers in [0,1] that 
simulates, or imitates, the ideal properties of random 
numbers (RN).
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Pseudo-Random Numbers

• Important properties of good random number routines:
• Fast
• Portable to different computers
• Have sufficiently long cycle
• Replicable

• Verification and debugging
• Use identical stream of random numbers for different systemsUse identical stream of random numbers for different systems

• Closely approximate the ideal statistical properties of 
• uniformity and 
• independence
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Pseudo-Random Numbers: Properties

• Two important statistical properties:
• Uniformityy
• Independence

• Random number Ri must be independently drawn from a 
if  di ib i  i h PDFuniform distribution with PDF:
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Pseudo-Random Numbers

• Problems when generating pseudo-random numbers
• The generated numbers might not be uniformly distributedg g y
• The generated numbers might be discrete-valued instead of 

continuous-valued
The mean of the gene ated n mbe s might be too high o  too • The mean of the generated numbers might be too high or too 
low

• The variance of the generated numbers might be too high or g g g
too low

• Th  i ht b  d d• There might be dependence:
• Autocorrelation between numbers
• Numbers successively higher or lower than adjacent numbers• Numbers successively higher or lower than adjacent numbers
• Several numbers above the mean followed by several 

numbers below the mean
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Generating Random NumbersGenerating Random Numbers
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Generating Random Numbers

• Midsquare method
• Linear Congruential Method (LCM)g ( )
• Combined Linear Congruential Generators (CLCG)
• Random-Number Streams
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Generating Random Numbers
Midsquare method

Generating Random Numbers
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Midsquare method

• First arithmetic generator: Midsquare method
• von Neumann and Metropolis in 1940sp

• The Midsquare method:
• Start with a four-digit positive integer Z0

• Compute:               to obtain an integer with up to eight 
digits

• Take the middle four digits for the next four-digit number

00
2
0 ZZZ ×=

• Take the middle four digits for the next four digit number

i Zi Ui Zi×Zii i i i

0 7182 - 51581124
1 5811 0.5811 33767721
2 7677 0.7677 58936329
3 9363 0.9363 87665769

…
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Midsquare method

• Problem: Generated
numbers tend to 0

i Zi Ui Zi×Zi

0 7182 515811240 7182 - 51581124
1 5811 0,5811 33767721
2 7677 0,7677 58936329
3 9363 0 9363 876657693 9363 0,9363 87665769
4 6657 0,6657 44315649
5 3156 0,3156 09960336
6 9603 0 9603 922176096 9603 0,9603 92217609
7 2176 0,2176 04734976
8 7349 0,7349 54007801
9 78 0 0078 000060849 78 0,0078 00006084

10 60 0,006 00003600
11 36 0,0036 00001296
12 12 0 0012 0000014412 12 0,0012 00000144
13 1 0,0001 00000001
14 0 0 00000000
15 0 0 00000000
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… random numbers should not be
generated with a method chosen atgenerated with a method chosen at

random. Some theory should be
usedused.

Donald E. Knuth, The Art of Computer Programming, Vol. 2
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Generating Random Numbers
Linear Congruential Method

Generating Random Numbers
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Linear Congruential Method

• To produce a sequence of integers X1, X2, … between 0 and 
m-1 by following a recursive relationship:

210d)( iXX ,...2,1,0    ,mod)(1 =+=+ imcaXX ii

Th Th ThThe 
multiplier

The 
increment

The 
modulus

• Assumption: 0<m and 0≤ a, c, X0 < m
• The selection of the values for a c m  and X drastically • The selection of the values for a, c, m, and X0 drastically 

affects the statistical properties and the cycle length
• The random integers Xi are being generated in [0, m-1]

0.18
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Linear Congruential Method

• Convert the integers Xi to random numbers

21== iXR i ,...2,1   , == i
m

Ri

• Note:
• Xi ∈ {0, 1, ..., m-1}
• R ∈ [0 (m 1)/m]• Ri ∈ [0, (m-1)/m]
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Linear Congruential Method: Example

• Use X0 = 27, a = 17, c = 43, and m = 100.
• The Xi and Ri values are:The Xi and Ri values are:

X1 = (17×27+43) mod 100 = 502 mod 100 = 2 R1 = 0.02
X2 = (17×2  +43) mod 100 = 77 R2 = 0.77
X3 = (17×77+43) mod 100 = 52 R3 = 0.52
X4 =  (17×52+43) mod 100 = 27 R3 = 0.27
……

0.20Prof. Dr. Mesut Güneş ▪ Ch. 6 Random-Number Generation



Linear Congruential Method: Example

• Use a = 13, c = 0, and m = 64
• The period of the i

Xi
X0=1

Xi
X0=2

Xi
X0=3

Xi
X0=4p

generator is very low
• Seed X0 influences the 

0 1 2 3 4
1 13 26 39 52
2 41 18 59 36
3 21 42 63 20sequence 3 21 42 63 20
4 17 34 51 4
5 29 58 23
6 57 50 436 57 50 3
7 37 10 47
8 33 2 35
9 45 7

10 9 27
11 53 31
12 49 19
13 61 5513 61 55
14 25 11
15 5 15
16 1 3
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Linear Congruential Method:
Characteristics of a good Generator

• Maximum Density
• The values assumed by Ri, i=1,2,… leave no large gaps on [0,1]

P bl  I t d f ti  h R i  di t• Problem: Instead of continuous, each Ri is discrete
• Solution: a very large integer for modulus m

• Approximation appears to be of little consequence

• Maximum Period
• To achieve maximum density and avoid cyclingy y g
• Achieved by proper choice of a, c, m, and X0

• Most digital computers use a binary representation of numbers• Most digital computers use a binary representation of numbers
• Speed and efficiency are aided by a modulus, m, to be (or close to) a 

power of 2.
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Linear Congruential Method:
Characteristics of a good Generator

• The LCG has full period if and only if the following three 
conditions hold (Hull and Dobell, 1962):
1. The only positive integer that (exactly) divides both m and c

is 1
2 If q is a prime number that divides m  then q divides a 12. If q is a prime number that divides m, then q divides a-1
3. If 4 divides m, then 4 divides a-1 
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Linear Congruential Method: 
Proper choice of parameters

• For m a power 2, m=2b, and c≠0p , , ≠
• Longest possible period P=m=2b is achieved 

if c is relative prime to m and a=1+4k, where k is an integer

• For m a power 2, m=2b, and c=0
• Longest possible period P /4 2b 2 is achieved • Longest possible period P=m/4=2b-2 is achieved 

if the seed X0 is odd and a=3+8k or a=5+8k, for k=0,1,...

• For m a prime and c=0
• Longest possible period P=m-1 is achieved 

if h  l i li  h   h  ll  i  h if the multiplier a has property that smallest integer k such 
that ak-1 is divisible by m is k = m-1
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Characteristics of a Good Generator
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Characteristics of a Good Generator
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Random-Numbers in Java

• Defined in java.util.Random

private final static long multiplier = 0x5DEECE66DL; // 25214903917
private final static long addend = 0xBL;             // 11
private final static long mask = (1L << 48) - 1;     // 248-1 = 281474976710655

protected int next(int bits) {
long oldseed, nextseed;
...
oldseed = seed.get();
nextseed = (oldseed * multiplier + addend) & mask;
...
return (int)(nextseed >>> (48 - bits));    // >>> Unsigned right shift

}
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General Congruential Generators

• Linear Congruential Generators are a special case of 
generators defined by:

mXXgX iii  mod ),,( 11 K−+ =

• where g() is a function of previous Xi’s
• Xi ∈ [0, m-1], Ri = Xi/m

• Quadratic congruential generator
• Defined by: cbXaXXXg ++= 2)(• Defined by: 

• Multiple recursive generators
• Defined by:

cbXaXXXg iiii ++= −− 11),(

kikiiii XaXaXaXXg +++= LK 1211 ),,(Defined by:

• Fibonacci generator
• Defined by:

kikiiiig −−− K 1211 ),,(

11  ),( −− += iiii X XXXg
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Combined Linear Congruential Generators

• Reason: Longer period generator is needed because of the 
increasing complexity of simulated systems.

• Approach: Combine two or more multiplicative congruential 
generators.

• Let Xi,1, Xi,2, …, Xi,k be the i-th output from k different 
multiplicative congruential generators.
• The j-th generator X•,j:

mcXaX mod)( +=

• has prime modulus mj, multiplier aj, and period mj -1

jjijji mcXaX mod )(,1 +=+

• produces integers Xi,j approx ~ Uniform on [0, mj – 1]
• Wi,j = Xi,j - 1 is approx ~ Uniform on integers on [0, mj - 2]
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Combined Linear Congruential Generators

• Suggested form:
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Combined Linear Congruential Generators
• Example: For 32-bit computers, combining k = 2 generators with 

m1 = 2147483563, a1 = 40014, m2 = 2147483399 and a2 = 40692. 
The algorithm becomes:The algorithm becomes:

Step 1: Select seeds
X0,1 in the range [1, 2147483562] for the 1st generator
X0 2 in the range [1, 2147483398]  for the 2nd generatorX0,2 in the range [1, 2147483398]  for the 2 generator

Step 2: For each individual generator,
Xi+1,1 = 40014 × Xi,1 mod 2147483563
Xi+1,2 = 40692 × Xi,2 mod 2147483399

Step 3: Xi+1 = (Xi+1,1 - Xi+1,2 ) mod 2147483562

Step 4: Return

⎪
⎧ >+ 01i XX

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

>

=

+

+
+

+      
     

0,2147483562

0,
2147483563

1

1
1

1

i

i
i

i

X

X

R

Step 5: Set i = i+1, go back to step 2.
• Combined generator has period: (m1 – 1)(m2 – 1)/2 ~ 2 x 1018

⎪⎩ +,
2147483563 1i

0.31
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Random-Numbers in Excel 2003

• In Excel 2003 and 2007 new Random Number Generator

30269 mod 171 X  X
00}{1,...,300  ZY, X,

⋅=
∈

30323 mod 170   Z Z
30307 mod 172  Y  Y

⋅=
⋅=

1.0 mod 
30323

 
30307

Y
30269

X  R ⎟
⎠
⎞

⎜
⎝
⎛ ++=

Z

• It is stated that this method produces more than 1013

numbersnumbers
• For more info: http://support.microsoft.com/kb/828795
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Random-Numbers Streams
• The seed for a linear congruential random-number generator:

• Is the integer value X0 that initializes the random-number sequence
• Any value in the sequence (X X X ) can be used to “seed” the generator• Any value in the sequence (X0, X1, …, XP) can be used to seed  the generator

• A random-number stream:
• Refers to a starting seed taken from the sequence (X X X )• Refers to a starting seed taken from the sequence (X0, X1, …, XP).
• If the streams are b values apart, then stream i is defined by starting seed:

⎣ ⎦b
P

ibi iXS ,,2,1             )1( K== −

• Older generators: b = 105

• Newer generators: b = 1037

)(

• A single random-number generator with k streams can act like k
distinct virtual random-number generators

• To compare two or more alternative systems.
• Advantageous to dedicate portions of the pseudo-random number sequence 

to the same purpose in each of the simulated systems.
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Random Numbers in OMNeT++

• OMNeT++ releases prior to 3.0 used a linear congruential 
generator (LCG) with a cycle length of 231-2.

• By default, OMNeT++ uses the Mersenne Twister RNG 
(MT) by M. Matsumoto and T. Nishimura. 

h d f 19937 d d l• MT has a period of 219937-1, and 623-dimensional 
equidistribution property is assured. 

• This RNG can be selected from omnetpp ini• This RNG can be selected from omnetpp.ini
• OMNeT++ allows plugging in your own RNGs as well. This 

mechanism, based on the cRNG interface.,
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Tests for Random NumbersTests for Random Numbers
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Tests for Random Numbers

• Two categories:
• Testing for uniformity:

H0:   Ri ~ U[0,1]
H1:   Ri U[0,1]

• Failure to reject the null hypothesis, H0, means that evidence of non-j yp , 0,
uniformity has not been detected.

• Testing for independence:
H0: Ri ~ independentH0:   Ri independent
H1:   Ri independent

• Failure to reject the null hypothesis, H0, means that evidence of 
dependence has not been detecteddependence has not been detected.

• Level of significance α, the probability of rejecting H0 when it is 
true:  

α = P(reject H0 | H0 is true)
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Tests for Random Numbers

• When to use these tests:
• If a well-known simulation language or random-number generator is 

used, it is probably unnecessary to test
• If the generator is not explicitly known or documented, e.g., 

spreadsheet programs, symbolic/numerical calculators, tests should 
be applied to many sample numbers.

• Types of tests:• Types of tests:
• Theoretical tests: evaluate the choices of m, a, and c without actually 

generating any numbers
E i i l t t  li d t  t l  f b  d d• Empirical tests: applied to actual sequences of numbers produced.
• Our emphasis.
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Tests for Random Numbers
Frequency tests: Kolmogorov-Smirnov Test

Tests for Random Numbers
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Kolmogorov-Smirnov Test

• Compares the continuous CDF, F(x), of the uniform distribution 
with the empirical CDF, SN(x), of the N sample observations.  

• We know: 10   ,)( ≤≤= xxxF
F(x)

• If the sample from the RNG 
is R R R  then the empirical is R1, R2, …, RN, then the empirical 
CDF, SN(x) is: 

RR hfN b ≤

0 1
x

N
xRRxS ii

N
 whereofNumber )( ≤

=

• Based on the statistic: D = max | F(x) - SN(x)|
• Sampling distribution of D is known
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Kolmogorov-Smirnov Test

• The test consists of the 
following steps

Kolmogorov-Smirnov Critical Values

• Step 1: Rank the data from 
smallest to largest
R(1) ≤ R(2) ≤ ... ≤ R(N)

• Step 2: Compute

⎬
⎫

⎨
⎧+ i

⎭
⎬
⎫

⎩
⎨
⎧ −

−=

⎭
⎬
⎫

⎩
⎨
⎧ −=

−

≤≤

+

N
iRD

R
N
iD

i

iNi

1max

max

)(

)(1

• Step 3: Compute D = max(D+, D-)
• Step 4: Get Dα for the 

⎭
⎬

⎩
⎨

≤≤ NiNi )(1

α
significance level α

• Step 5: If D ≤ Dα accept, 
otherwise reject H0

0.40

j 0
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Kolmogorov-Smirnov Test

• Example: Suppose N=5 numbers: 0.44, 0.81, 0.14, 0.05, 0.93.

i 1 2 3 4 5 Arrange R fromi 1 2 3 4 5

R(i) 0.05 0.14 0.44 0.81 0.93

i/N 0.20 0.40 0.60 0.80 1.00

Step 1:
Arrange R(i) from 

smallest to largest

D+ = max{i/N – R(i)}

i/N – R(i) 0.15 0.26 0.16 - 0.07

R(i) – (i-1)/N 0.05 - 0.04 0.21 0.13
Step 2: D - = max{R(i) - (i-1)/N}

Step 3: D = max(D+ D-) = 0 26Step 3: D = max(D , D ) = 0.26

Step 4: For α = 0.05, 

D = 0.565 > D = 0.26Dα  0.565 > D 0.26

Hence, H0 is not rejected.
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Tests for Random Numbers
Frequency tests: Chi-square Test

Tests for Random Numbers
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Chi-square Test

• Chi-square test uses the sample statistic:

Oi is the observed # in the i-th classn is the # of classes

Ei is the expected # in the i-th class

Oi is the observed # in the i th classn is the # of classes

∑
=

−
=

n

i i

ii

E
EO

1

2
2
0

)(χ

• Approximately the chi-square distribution with n-1 degrees of 
freedom

=i i1

• For the uniform distribution, Ei, the expected number in each class 
is:

N

• Valid only for large samples, e.g., N ≥ 50

nsobservatioofnumber totaltheisN   where,
n
NEi =

0.43

y g p , g ,
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Chi-square Test: Example 

Interval Upper Limit Oi Ei Oi-Ei (Oi-Ei)^2 (Oi-Ei)^2/Ei

• Example with 100 numbers from [0,1], α=0.05
• 10 intervals Interval Upper Limit Oi Ei Oi Ei (Oi Ei) 2 (Oi Ei) 2/Ei

1 0.1 10 10 0 0 0

2 0.2 9 10 -1 1 0.1

3 0 3 5 10 5 25 2 5

• χ 2
0.05,9 = 16.9

• Accept, since 
2 11 2 2 3 0.3 5 10 -5 25 2.5

4 0.4 6 10 -4 16 1.6

5 0.5 16 10 6 36 3.6

6 0 6 13 10 3 9 0 9

• X2
0=11.2 < χ 2

0.05,9

6 0.6 13 10 3 9 0.9

7 0.7 10 10 0 0 0

8 0.8 7 10 -3 9 0.9

9 0.9 10 10 0 0 0

10 1.0 14 10 4 16 1.6

Sum 100 100 0 0 11.2

X2
0=11.2∑

=

−
=

n

i i

ii

E
EO

1

2
2
0

)(χ
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Tests for Random Numbers
Tests for autocorrelation

Tests for Random Numbers
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Tests for Autocorrelation

• Autocorrelation is concerned with dependence between 
numbers in a sequence

• Example:

0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 0.83 0.93
0.99 0.15 0.33 0.35 0.91 0.41 0.60 0.27 0.75 0.88
0.68 0.49 0.05 0.43 0.95 0.58 0.19 0.36 0.69 0.87

• Numbers at 5-th, 10-th, 15-th, ... are very similar
• Numbers can be

• Low• Low
• High
• Alternating
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Tests for Autocorrelation

• Testing the autocorrelation between every m numbers (m is 
a.k.a. the lag), starting with the i-th number
• The autocorrelation ρi,m between numbers:  Ri, Ri+m, Ri+2m, Ri+(M+1)m

• M is the largest integer such that  Nm Mi ≤++ )1(

• Hypothesis:

tindependen are numbersif   ,0  :0 =miH ρ
dependent are numbers if

p

     ,0   :
,

,1

,0

≠mi

mi

H ρ
ρ

• If the values are uncorrelated:
• For large values of M, the distribution of the estimator of ρi m, g , ρi,m,

denoted        is approximately normal.mi,ρ̂
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Tests for Autocorrelation

• Correlation at lag j
jC

)()()(),(
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jiijiijiij

j
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+++ −==
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Tests for Autocorrelation
• Test statistics is: miZ

ˆ

,
0 ˆ

ˆ

ρσ
ρ

=

• Z0 is distributed normally with mean = 0 and variance = 1, and:
mi ,ρ

250
1

1ˆ
0

1, −⎥
⎦

⎤
⎢
⎣

⎡
×

+
= ∑

=
+++ .RR

M
ρ

M

k
)m(kikmimi

)1(12
713ˆ

, +
+

=
M
Mσ

miρ

• After computing Z0 do not reject 
h  h h i  f the hypothesis of 

independence if –zα/2 ≤ Z0 ≤ –zα/2
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Tests for Autocorrelation
• If ρi,m > 0, the subsequence has positive autocorrelation

• High random numbers tend to be followed by high ones, and vice versa.

• If ρi,m < 0, the subsequence has negative autocorrelation
• Low random numbers tend to be followed by high ones, and vice versa.
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Example

• Test whether the 3rd, 8th, 13th, and so on, for the numbers  on 
Slide 38.
• Hence, α = 0.05, i = 3, m = 5, N = 30, and M = 4

250
)27.0)(33.0()33.0)(28.0()28.0)(23.0(1ˆ ⎥
⎤

⎢
⎡ ++

1945.0

250
)36.0)(05.0()05.0)(27.0(1435

−=

−⎥
⎦

⎢
⎣ +++

= .ρ

19450

128.0
1412

7)4(13
ˆ35

=
+

+
=

)(
σ ρ

516.1
1280.0
1945.0

0 −=−=Z

• z0.025 = 1.96
• Since -1.96 ≤ Z0 = -1.516 ≤ 1.96, the hypothesis is not rejected.
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Shortcomings

• The test is not very sensitive for small values of M, particularly 
when the numbers being tested are on the low side.

• Problem when “fishing” for autocorrelation by performing 
numerous tests:
• If α = 0.05, there is a probability of 0.05 of rejecting a true If α  0.05, there is a probability of 0.05 of rejecting a true 

hypothesis.
• If 10 independence sequences are examined:

• The probability of finding no significant autocorrelation  by chance • The probability of finding no significant autocorrelation, by chance 
alone, is 0.9510 = 0.60.

• Hence, the probability of detecting significant autocorrelation 
when it does not exist  40% when it does not exist = 40% 
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Real Random NumbersReal Random Numbers
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Real Random Numbers

• There are also sources for 
real random numbers in the 
I t tInternet

• www.random.org
„RANDOM.ORG offers true„
random numbers to anyone 
on the Internet. The 
randomness comes from randomness comes from 
atmospheric noise, which for 
many purposes is better than 
the pseudo random number the pseudo-random number 
algorithms typically used in 
computer programs. People 

 th  b  t   

http://www.random.org/analysis/

use the numbers to run 
lotteries, draws and 
sweepstakes and for their 

0.54

games and gambling sites.”
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Real Random Numbers

• http://www.randomnumbers.info/
„It offers the possibility to download true random 
numbers generated using a quantum random number 
generator upon demand. “
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Real Random Numbers

• Hardware based generation 
of random numbers

• http://www.comscire.com
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Summary

• In this chapter, we described:
• Generation of random numbers
• Testing for uniformity and independence
• Sources of real random numbers

• Caution:
• Even with generators that have been used for years, some of which 

till i    f d t  b  i d tstill in use, are found to be inadequate.
• This chapter provides only the basics
• Also, even if generated numbers pass all the tests, some underlying 

pattern might have gone undetected.
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