
Image compression using SVD 

Images are represented in a rectangular array where each element 

corresponds to the grayscale value for that pixel. For coloured 

images we have a 3-dimensional array of size n×m×3, 

where n and m represent the number of pixels vertically and 

horizontally, respectively, and for each pixel we store the intensity 

for colours red, green and blue. 
Singular Value Decomposition (SVD) is a powerful technique used in image 

processing for various purposes including compression, denoising, and feature 

extraction. Here's how SVD can be applied in image processing: 

1. Image Compression: SVD can be used to compress images by representing them in 

a lower-dimensional space. In the context of images, this means reducing the 

number of singular values used to represent the image. By keeping only the most 

significant singular values and their corresponding singular vectors, you can achieve 

compression while preserving the essential features of the image. 

2. Denoising: SVD can also be used for denoising images. Noisy images can be 

decomposed into their singular values, and then the noisy singular values can be 

filtered or thresholded to remove noise. After filtering, the image can be 

reconstructed using the denoised singular values and vectors. 

3. Image Reconstruction: SVD can be used for image reconstruction from incomplete 

or corrupted data. If some information about the image is missing or corrupted, SVD 

can be applied to estimate the missing or corrupted parts and reconstruct the image. 

4. Feature Extraction: SVD can extract the most important features of an image by 

analyzing the singular values and vectors. These features can be used for tasks such 

as object recognition, image classification, and image retrieval. 

5. Image Watermarking: SVD can also be used in digital watermarking of images. 

Watermark information can be embedded into the singular values or vectors of the 

image, allowing for authentication or copyright protection. 

Overall, Singular Value Decomposition is a versatile tool in image processing that can 

be applied to various tasks, from compression to feature extraction and beyond, 

providing efficient and effective solutions for image analysis and manipulation. 
 

Singular Value Decomposition (SVD) finds various applications in image processing 

(IP), enabling a range of techniques for analysis and manipulation. Here are some of 

the key uses of SVD in image processing: 



1. Image Registration: SVD can aid in image registration, which involves aligning 

images from different sources or viewpoints. By decomposing the images into their 

singular values and vectors, it's possible to extract transformation parameters that 

can be used to register or align the images accurately. 

2. Image Analysis and Understanding: SVD can facilitate the analysis and 

understanding of images by revealing underlying structures and relationships within 

the image data. This can include tasks such as image segmentation, texture analysis, 

and shape recognition. 

Overall, Singular Value Decomposition serves as a fundamental tool in image 

processing, providing versatile capabilities for tasks ranging from data compression 

to feature extraction and image enhancement. Its application in IP continues to 

advance the field by enabling efficient and effective solutions to various image-

related challenges. 
 

 

Singular Value Decomposition (SVD) is a factorization of a matrix into three matrices. 

Given an m×n matrix A, its SVD is represented as: 

ΣA=UΣVT 

Where: 

 U is an m×m unitary matrix (i.e., UTU=I), where UT denotes the transpose of matrix 

U. 

 ΣΣ is an m×n rectangular diagonal matrix with non-negative real numbers on the 

diagonal, often called singular values. The singular values are arranged in descending 

order. The remaining elements of ΣΣ are zero. 

 V is an n×n unitary matrix. 

 

 

Singular Value Decomposition (SVD) offers several advantages across various fields, 

including mathematics, statistics, engineering, and computer science. Here are some 

of the key advantages of SVD: 

1. Dimensionality Reduction: SVD allows for the reduction of dimensionality in data 

while preserving essential information. This is particularly useful in fields such as 

image processing, where reducing the dimensionality of image data can lead to 

efficient storage, transmission, and processing. 



2. Data Compression: SVD enables data compression by representing high-

dimensional data with a smaller number of singular values and vectors. This 

compression is valuable in applications where storage space is limited or where 

efficient data transmission is necessary, such as in multimedia applications. 

3. Noise Reduction: In applications such as signal processing and image denoising, 

SVD can effectively separate signal from noise. By retaining only the dominant 

singular values and vectors, SVD can filter out noise while preserving the underlying 

structure of the data. 

4. Feature Extraction: SVD can extract meaningful features from data, making it useful 

for tasks such as pattern recognition, image analysis, and natural language 

processing. By analyzing the singular values and vectors, important patterns and 

relationships within the data can be identified. 

5. Numerical Stability: SVD is numerically stable and well-conditioned, making it 

robust to small perturbations in the input data. This stability ensures that SVD can 

reliably decompose matrices without amplifying errors or numerical instabilities. 

6. Low-rank Approximation: SVD provides an optimal low-rank approximation of a 

matrix, allowing for efficient representation of data in terms of a smaller number of 

singular values and vectors. This property is beneficial in various computational tasks, 

including matrix completion and collaborative filtering. 

7. Signal Processing: In signal processing, SVD is used for tasks such as system 

identification, filtering, and spectral analysis. It provides a powerful tool for analyzing 

and manipulating signals in both time and frequency domains. 

8. Matrix Factorization: SVD enables the factorization of matrices into orthogonal or 

unitary matrices and a diagonal matrix of singular values. This factorization is 

fundamental to various matrix-based algorithms and techniques in linear algebra and 

optimization. 

Overall, the versatility and robustness of Singular Value Decomposition make it a 

valuable tool in numerous applications, ranging from data analysis and processing to 

machine learning and scientific computing. Its ability to extract meaningful 

information from complex data sets while providing efficient representations makes 

it indispensable in many fields. 
 

 

Singular Value Decomposition (SVD) can be applied to perform image compression 

by reducing the dimensionality of the image data while preserving its essential 

features. Here are the steps involved in using SVD for image compression: 

1. Convert Image to Matrix: The first step is to represent the image as a matrix. For 

grayscale images, each pixel value corresponds to an element in the matrix. For color 

images, you may convert the image to a suitable color space (e.g., RGB to grayscale) 

and then represent it as a matrix. 



2. Compute SVD: Once the image is represented as a matrix A, compute its Singular 

Value Decomposition (SVD) as A=UΣVT, where U is an m×m unitary matrix, ΣΣ is 

an m×n rectangular diagonal matrix containing the singular values, and V is an n×n 

unitary matrix. 

3. Truncate Singular Values: In image compression, you aim to retain only the most 

significant singular values and discard the rest. Determine the number of singular 

values to keep based on the desired compression ratio or quality level. Typically, you 

keep the first k singular values and discard the rest. 

4. Reduce Dimensionality: After truncating the singular values, create a reduced 

version of the U and V matrices by keeping only the corresponding columns 

associated with the retained singular values. This results in reduced matrices Uk and 

Vk. 

5. Reconstruct Compressed Image: Reconstruct the compressed image matrix Ak 

using the reduced matrices Uk, ΣΣk, and Vk as follows: Ak=UkΣkVkT 

6. Convert Matrix to Image: Convert the compressed image matrix Ak back to an 

image format suitable for display or further processing. For grayscale images, 

reshape the matrix to the original image dimensions. For color images, you may need 

to convert the matrix back to the appropriate color space and reshape it. 

7. Quality Assessment: Evaluate the quality of the compressed image using metrics 

such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), or 

perceptual quality metrics. 

By following these steps, you can effectively use Singular Value Decomposition (SVD) 

for image compression, achieving significant reduction in file size while preserving 

the important features of the image. Adjusting the number of retained singular 

values allows you to trade off between compression ratio and image quality. 
 

 

While Singular Value Decomposition (SVD) offers numerous advantages and is widely used 

in various fields, it also has some limitations and disadvantages: 

1. Computational Complexity: SVD can be computationally expensive, particularly for large 

matrices. The computation of SVD involves matrix factorizations and eigenvalue 

calculations, which can be time-consuming and resource-intensive. 

2. Memory Requirements: SVD may require significant memory resources, especially for 

large matrices. Storing the matrices �U, ΣΣ, and �V can be memory-intensive, 

particularly if the matrix dimensions are large. 

3. Lossy Compression: While SVD-based compression techniques can achieve significant 
compression ratios, they typically result in lossy compression. Truncating singular values 

leads to information loss, which may degrade the quality of the reconstructed data, especially 

for high compression ratios. 



4. Suboptimal for Sparse Matrices: SVD may not be the most efficient method for sparse 

matrices. Sparse matrices contain a large number of zero elements, and SVD may not exploit 

this sparsity effectively, leading to inefficient computations and memory usage. 

5. Numerical Stability: SVD computations may suffer from numerical stability issues, 
particularly for matrices with ill-conditioned or nearly singular values. This can lead to 

numerical errors and inaccuracies in the computed decomposition. 

6. Interpretability: While SVD provides a mathematically elegant decomposition of matrices, 

interpreting the meaning of the singular values and vectors may not always be 

straightforward, especially in complex data sets. 

7. Limited Scalability: SVD may not scale well to extremely large data sets or high-
dimensional data. For such data, alternative techniques such as randomized SVD or 

incremental SVD may be more suitable. 

8. Dependence on Matrix Structure: The effectiveness of SVD depends on the structure and 

properties of the input matrix. SVD may not perform optimally for matrices with certain 

characteristics, such as highly correlated columns or rows. 

9. Difficulty with Streaming Data: SVD typically requires access to the entire matrix at once, 
which may pose challenges for streaming or online data processing scenarios where data 

arrives incrementally. 

Despite these disadvantages, Singular Value Decomposition remains a valuable tool in 

various fields, and researchers continue to develop techniques to address some of these 

limitations and improve its efficiency and applicability. Depending on the specific 

requirements and constraints of a given problem, alternative methods or modifications of 

SVD may be more appropriate. 

 


