
http://www.tutorialspoint.com/java/java_thread_synchronization.htm Copyright © tutorialspoint.com

JAVA - THREAD SYNCHRONIZATIONJAVA - THREAD SYNCHRONIZATION

When we start two or more threads within a program, there may be a situation when multiple
threads try to access the same resource and finally they can produce unforeseen result due to
concurrency issue. For example if multiple threads try to write within a same file then they may
corrupt the data because one of the threads can overrite data or while one thread is opening the
same file at the same time another thread might be closing the same file.

So there is a need to synchronize the action of multiple threads and make sure that only one
thread can access the resource at a given point in time. This is implemented using a concept
called monitors. Each object in Java is associated with a monitor, which a thread can lock or
unlock. Only one thread at a time may hold a lock on a monitor.

Java programming language provides a very handy way of creating threads and synchronizing
their task by using synchronized blocks. You keep shared resources within this block. Following is
the general form of the synchronized statement:

synchronized(objectidentifier) {
 // Access shared variables and other shared resources
}

Here, the objectidentifier is a reference to an object whose lock associates with the monitor that
the synchronized statement represents. Now we are going to see two examples where we will print
a counter using two different threads. When threads are not synchronized, they print counter value
which is not in sequence, but when we print counter by putting inside synchronized block, then it
prints counter very much in sequence for both the threads.

Multithreading example without Synchronization:
Here is a simple example which may or may not print counter value in sequence and every time
we run it, it produces different result based on CPU availability to a thread.

class PrintDemo {
 public void printCount(){
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Counter --- " + i);
 }
 } catch (Exception e) {
 System.out.println("Thread interrupted.");
 }
 }

}

class ThreadDemo extends Thread {
 private Thread t;
 private String threadName;
 PrintDemo PD;

 ThreadDemo(String name, PrintDemo pd){
 threadName = name;
 PD = pd;
 }
 public void run() {
 PD.printCount();
 System.out.println("Thread " + threadName + " exiting.");
 }

 public void start ()
 {
 System.out.println("Starting " + threadName);
 if (t == null)

http://www.tutorialspoint.com/java/java_thread_synchronization.htm

 {
 t = new Thread (this, threadName);
 t.start ();
 }
 }

}

public class TestThread {
 public static void main(String args[]) {

 PrintDemo PD = new PrintDemo();

 ThreadDemo T1 = new ThreadDemo("Thread - 1 ", PD);
 ThreadDemo T2 = new ThreadDemo("Thread - 2 ", PD);

 T1.start();
 T2.start();

 // wait for threads to end
 try {
 T1.join();
 T2.join();
 } catch(Exception e) {
 System.out.println("Interrupted");
 }
 }
}

This produces different result every time you run this program:

Starting Thread - 1
Starting Thread - 2
Counter --- 5
Counter --- 4
Counter --- 3
Counter --- 5
Counter --- 2
Counter --- 1
Counter --- 4
Thread Thread - 1 exiting.
Counter --- 3
Counter --- 2
Counter --- 1
Thread Thread - 2 exiting.

Multithreading example with Synchronization:
Here is the same example which prints counter value in sequence and every time we run it, it
produces same result.

class PrintDemo {
 public void printCount(){
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Counter --- " + i);
 }
 } catch (Exception e) {
 System.out.println("Thread interrupted.");
 }
 }

}

class ThreadDemo extends Thread {
 private Thread t;
 private String threadName;
 PrintDemo PD;

 ThreadDemo(String name, PrintDemo pd){
 threadName = name;
 PD = pd;
 }
 public void run() {
 synchronized(PD) {
 PD.printCount();
 }
 System.out.println("Thread " + threadName + " exiting.");
 }

 public void start ()
 {
 System.out.println("Starting " + threadName);
 if (t == null)
 {
 t = new Thread (this, threadName);
 t.start ();
 }
 }

}

public class TestThread {
 public static void main(String args[]) {

 PrintDemo PD = new PrintDemo();

 ThreadDemo T1 = new ThreadDemo("Thread - 1 ", PD);
 ThreadDemo T2 = new ThreadDemo("Thread - 2 ", PD);

 T1.start();
 T2.start();

 // wait for threads to end
 try {
 T1.join();
 T2.join();
 } catch(Exception e) {
 System.out.println("Interrupted");
 }
 }
}

This produces same result every time you run this program:

Starting Thread - 1
Starting Thread - 2
Counter --- 5
Counter --- 4
Counter --- 3
Counter --- 2
Counter --- 1
Thread Thread - 1 exiting.
Counter --- 5
Counter --- 4
Counter --- 3
Counter --- 2
Counter --- 1
Thread Thread - 2 exiting.

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

