
Exception Handling in Java
1. Exception Handling

2. Advantage of Exception Handling

3. Hierarchy of Exception classes

4. Types of Exception

5. Scenarios where exception may occur

The exception handling in java is one of the powerful mechanism to handle the runtime
errors so that normal flow of the application can be maintained.

In this page, we will learn about java exception, its type and the difference between
checked and unchecked exceptions.

What is exception
Dictionary Meaning: Exception is an abnormal condition.

In java, exception is an event that disrupts the normal flow of the program. It is an object
which is thrown at runtime.

What is exception handling
Exception Handling is a mechanism to handle runtime errors such as ClassNotFound, IO,
SQL, Remote etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the
application. Exception normally disrupts the normal flow of the application that is why we
use exception handling. Let's take a scenario:

1. statement 1;

2. statement 2;

3. statement 3;

4. statement 4;
5. statement 5;//exception occurs

6. statement 6;

7. statement 7;

8. statement 8;

9. statement 9;

10. statement 10;

Suppose there is 10 statements in your program and there occurs an exception at
statement 5, rest of the code will not be executed i.e. statement 6 to 10 will not run. If we
perform exception handling, rest of the statement will be executed. That is why we use
exception handling in java.

Hierarchy of Java Exception classes

Types of Exception
There are mainly two types of exceptions: checked and unchecked where error is considered
as unchecked exception. The sun microsystem says there are three types of exceptions:

1. Checked Exception

2. Unchecked Exception

3. Error

Difference between checked and unchecked
exceptions
1) Checked Exception

The classes that extend Throwable class except RuntimeException and Error are known as
checked exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at
compile-time.

2) Unchecked Exception

The classes that extend RuntimeException are known as unchecked exceptions e.g.
ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc.
Unchecked exceptions are not checked at compile-time rather they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Common scenarios where exceptions may occur
There are given some scenarios where unchecked exceptions can occur. They are as
follows:

1) Scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

1. int a=50/0;//ArithmeticException

2) Scenario where NullPointerException occurs

If we have null value in any variable, performing any operation by the variable occurs an
NullPointerException.

1. String s=null;
2. System.out.println(s.length());//NullPointerException

3) Scenario where NumberFormatException occurs

The wrong formatting of any value, may occur NumberFormatException. Suppose I have a
string variable that have characters, converting this variable into digit will occur
NumberFormatException.

1. String s="abc";

2. int i=Integer.parseInt(s);//NumberFormatException

4) Scenario where ArrayIndexOutOfBoundsException occurs

If you are inserting any value in the wrong index, it would result
ArrayIndexOutOfBoundsException as shown below:

1. int a[]=new int[5];

2. a[10]=50; //ArrayIndexOutOfBoundsException

Java Exception Handling Keywords
There are 5 keywords used in java exception handling.

1. try

2. catch

3. finally

4. throw

5. throws

Java try-catch

Java try block
Java try block is used to enclose the code that might throw an exception. It must be used
within the method.

Java try block must be followed by either catch or finally block.

Syntax of java try-catch
1. try{

2. //code that may throw exception

3. }catch(Exception_class_Name ref){}

Syntax of try-finally block
1. try{

2. //code that may throw exception

3. }finally{}

Java catch block
Java catch block is used to handle the Exception. It must be used after the try block only.

You can use multiple catch block with a single try.

Problem without exception handling
Let's try to understand the problem if we don't use try-catch block.

1. public class Testtrycatch1{

2. public static void main(String args[]){
3. int data=50/0;//may throw exception

4. System.out.println("rest of the code...");

5. }

6. }
Test it Now

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

As displayed in the above example, rest of the code is not executed (in such case, rest of
the code... statement is not printed).

There can be 100 lines of code after exception. So all the code after exception will not be
executed.

Solution by exception handling
Let's see the solution of above problem by java try-catch block.

1. public class Testtrycatch2{

2. public static void main(String args[]){

3. try{

4. int data=50/0;

5. }catch(ArithmeticException e){System.out.println(e);}

6. System.out.println("rest of the code...");
7. }

8. }
Test it Now

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero
rest of the code...

Now, as displayed in the above example, rest of the code is executed i.e. rest of the code...
statement is printed.

Internal working of java try-catch block

The JVM firstly checks whether the exception is handled or not. If exception is not handled,
JVM provides a default exception handler that performs the following tasks:

o Prints out exception description.

o Prints the stack trace (Hierarchy of methods where the exception occurred).

o Causes the program to terminate.

But if exception is handled by the application programmer, normal flow of the application is
maintained i.e. rest of the code is executed.

Java Multi catch block
If you have to perform different tasks at the occurrence of different Exceptions, use java
multi catch block.

Let's see a simple example of java multi-catch block.

1. public class TestMultipleCatchBlock{

2. public static void main(String args[]){

3. try{

4. int a[]=new int[5];

5. a[5]=30/0;

6. }

7. catch(ArithmeticException e){System.out.println("task1 is completed");}

8. catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed");}

9. catch(Exception e){System.out.println("common task completed");}

10.

11. System.out.println("rest of the code...");

12. }
13. }

Test it Now
Output:task1 completed
 rest of the code...

Rule: At a time only one Exception is occured and at a time only one catch block is executed.

Rule: All catch blocks must be ordered from most specific to most general i.e. catch for
ArithmeticException must come before catch for Exception .

1. class TestMultipleCatchBlock1{

2. public static void main(String args[]){

3. try{

4. int a[]=new int[5];

5. a[5]=30/0;

6. }

7. catch(Exception e){System.out.println("common task completed");}

8. catch(ArithmeticException e){System.out.println("task1 is completed");}
9. catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed");}

10. System.out.println("rest of the code...");

11. }

12. }
Test it Now

Output:

Compile-time error

Java Nested try block
The try block within a try block is known as nested try block in java.

Why use nested try block

Sometimes a situation may arise where a part of a block may cause one error and the entire
block itself may cause another error. In such cases, exception handlers have to be nested.

Syntax:

1.

2. try

3. {

4. statement 1;

5. statement 2;

6. try

7. {

8. statement 1;

9. statement 2;

10. }

11. catch(Exception e)

12. {
13. }

14. }

15. catch(Exception e)

16. {

17. }

18.

Java nested try example
Let's see a simple example of java nested try block.

1. class Excep6{

2. public static void main(String args[]){

3. try{

4. try{

5. System.out.println("going to divide");
6. int b =39/0;

7. }catch(ArithmeticException e){System.out.println(e);}

8.

9. try{

10. int a[]=new int[5];

11. a[5]=4;

12. }catch(ArrayIndexOutOfBoundsException e){System.out.println(e);}

13.
14. System.out.println("other statement);

15. }catch(Exception e){System.out.println("handeled");}

16.

17. System.out.println("normal flow..");

18. }

19. }

Java finally block
Java finally block is a block that is used to execute important code such as closing
connection, stream etc.

Java finally block is always executed whether exception is handled or not.

Java finally block follows try or catch block.

Usage of Java finally
Let's see the different cases where java finally block can be used.

Case 1

Let's see the java finally example where exception doesn't occur.

1. class TestFinallyBlock{

2. public static void main(String args[]){

3. try{

4. int data=25/5;

5. System.out.println(data);

6. }

7. catch(NullPointerException e){System.out.println(e);}

8. finally{System.out.println("finally block is always executed");}

9. System.out.println("rest of the code...");

10. }
11. }

Test it Now
Output:5
 finally block is always executed
 rest of the code...

Case 2

Let's see the java finally example where exception occurs and not handled.

1. class TestFinallyBlock1{

2. public static void main(String args[]){

3. try{
4. int data=25/0;

5. System.out.println(data);

6. }

7. catch(NullPointerException e){System.out.println(e);}

8. finally{System.out.println("finally block is always executed");}

9. System.out.println("rest of the code...");

10. }

11. }
Test it Now
Output:finally block is always executed
 Exception in thread main java.lang.ArithmeticException:/ by zero

Case 3

Let's see the java finally example where exception occurs and handled.

1. public class TestFinallyBlock2{

2. public static void main(String args[]){

3. try{
4. int data=25/0;

5. System.out.println(data);

6. }

7. catch(ArithmeticException e){System.out.println(e);}

8. finally{System.out.println("finally block is always executed");}

9. System.out.println("rest of the code...");

10. }

11. }
Test it Now
Output:Exception in thread main java.lang.ArithmeticException:/ by zero
 finally block is always executed
 rest of the code...

Rule: For each try block there can be zero or more catch blocks, but only one finally block.

Note: The finally block will not be executed if program exits(either by calling System.exit() or
by causing a fatal error that causes the process to abort).

Java throw exception

Java throw keyword
The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or uncheked exception in java by throw keyword. The throw
keyword is mainly used to throw custom exception. We will see custom exceptions later.

The syntax of java throw keyword is given below.

1. throw exception;

Let's see the example of throw IOException.

1. throw new IOException("sorry device error);

Java throw exception

Java throw keyword
The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or uncheked exception in java by throw keyword. The throw
keyword is mainly used to throw custom exception. We will see custom exceptions later.

The syntax of java throw keyword is given below.

1. throw exception;

Let's see the example of throw IOException.

1. throw new IOException("sorry device error);

Java throws keyword
The Java throws keyword is used to declare an exception. It gives an information to the
programmer that there may occur an exception so it is better for the programmer to
provide the exception handling code so that normal flow can be maintained.

Exception Handling is mainly used to handle the checked exceptions. If there occurs any
unchecked exception such as NullPointerException, it is programmers fault that he is not
performing check up before the code being used.

Syntax of java throws

1. return_type method_name() throws exception_class_name{

2. //method code

3. }

Which exception should be declared
Ans) checked exception only, because:

o unchecked Exception: under your control so correct your code.

o error: beyond your control e.g. you are unable to do anything if there occurs

VirtualMachineError or StackOverflowError.

Advantage of Java throws keyword

Now Checked Exception can be propagated (forwarded in call stack).

It provides information to the caller of the method about the exception.

Java throws example
Let's see the example of java throws clause which describes that checked exceptions can be
propagated by throws keyword.

1. import java.io.IOException;

2. class Testthrows1{

3. void m()throws IOException{

4. throw new IOException("device error");//checked exception
5. }

6. void n()throws IOException{

7. m();

8. }

9. void p(){

10. try{

11. n();

12. }catch(Exception e){System.out.println("exception handled");}
13. }

14. public static void main(String args[]){

15. Testthrows1 obj=new Testthrows1();

16. obj.p();

17. System.out.println("normal flow...");

18. }

19. }

Output:

exception handled
normal flow...

Rule: If you are calling a method that declares an exception, you must either caught or
declare the exception.

There are two cases:

1. Case1:You caught the exception i.e. handle the exception using try/catch.

2. Case2:You declare the exception i.e. specifying throws with the method.

Case1: You handle the exception

o In case you handle the exception, the code will be executed fine whether exception

occurs during the program or not.

1. import java.io.*;

2. class M{

3. void method()throws IOException{
4. throw new IOException("device error");

5. }

6. }

7. public class Testthrows2{

8. public static void main(String args[]){

9. try{

10. M m=new M();

11. m.method();
12. }catch(Exception e){System.out.println("exception handled");}

13.

14. System.out.println("normal flow...");

15. }

16. }
Test it Now
Output:exception handled
 normal flow...

Case2: You declare the exception

o A)In case you declare the exception, if exception does not occur, the code will be

executed fine.

o B)In case you declare the exception if exception occures, an exception will be thrown

at runtime because throws does not handle the exception.

A)Program if exception does not occur
1. import java.io.*;

2. class M{

3. void method()throws IOException{

4. System.out.println("device operation performed");

5. }

6. }

7. class Testthrows3{
8. public static void main(String args[])throws IOException{//declare exception

9. M m=new M();

10. m.method();

11.

12. System.out.println("normal flow...");

13. }

14. }
Test it Now
Output:device operation performed
 normal flow...

B)Program if exception occurs

1. import java.io.*;

2. class M{

3. void method()throws IOException{
4. throw new IOException("device error");

5. }

6. }

7. class Testthrows4{

8. public static void main(String args[])throws IOException{//declare exception

9. M m=new M();

10. m.method();

11.
12. System.out.println("normal flow...");

13. }

14. }
Test it Now
Output:Runtime Exception

