### Properties

1. Aromaticity



# Properties

- Aromaticity
- Pyrazole have 3 C and 2 N, all are  $sp^2$  hybridized
- $sp^2$  hybridization is planar, it makes a planar pyrazole ring structure. Each ring atoms also contains unhybridized p orbital that is
- perpendicular to the plane of  $\sigma$  bonds (plane of ring). Here p orbitals are parallel to each other, so overlapping btwn p
- orbitals is possible. the total nu of non bonding e- are 6 (3 of three C, 1 from one N and
  - 2 of other N) The resonance of 6 e- follows the Hückel's rule
- So the pyrazole is aromatic.

## Properties

- Tautomerism
- Rapid migration of hydrogen from one nitrogen to the other.



Hydrogen bonding





2 Hydrogen bonding within 2 molecules (cyclic dimer)

- From pyrimidine
- Pyrimidine is very susceptible to nucleophilic addition.
- it reacts with hot hydrazine solution to give pyrazole.



# Synthesis

#### From pyrimidine

#### mechanism

 Mechanism follows Addition of Nucleophile Ring Opening Ring Closure (ANRORC) sequence.



- Knorr pyrazole synthesis
- Rxn convert a hydrazine or its derivatives and a 1,3-dicarbonyl compound to a pyrazole using an acid catalyst.

# Synthesis

Knorr pyrazole synthesis mechanism

Heterocyclic Compounds \_ AZC\_

2010



# Synthesis

Knorr pyrazole synthesis

#### Examples

$$C_6H_5$$
 +  $H_2N$  +

dicarbonyl compound

isomeric mixture

- 3. From Nitrile Imines
- Pyrazoles are produced by the <u>dipolar cycloaddition</u> btwn alkynes with nitrile imines.



- From diazo compound
- Diazo compound adds to an acetylenic derivative gives pyrazole



- Electrophilic addition to N
- a. Protonation (basic property)
- Pyrazole accept proton, act as base.



- Electrophilic addition to N
- b. N-alkylation



- Electrophilic addition to N
- b. N-alkylation
- Pyrazole reacts with alkyl halide and first gives N-alkyl pyrazolium salt.
- This salt can lose an N-proton in an equilibrium with unreacted pyrazole, generating N-alkyl pyrazole.
- N-alkyl pyrazole reacts with alkyl halide and gives N-1,N-2dialkylpyrazolium salt.

### 2. Electrophilic substitution to C

- Pyrazole undergoes electrophilic substitution reaction at 4<sup>th</sup> position.
- Electrophilic attack at possible positions with intermediates,

  C-3

  L

  N

  N

  intermediates with





# Reactions

than pyrazole.

Heterocyclic Compounds \_ AZC\_

- 2. Electrophilic substitution to C
- Electrophilic attack at C-3 & C-5 generates highly unstable +vely
- charged azomethine intermediate.
   Electrophilic attack at C-4 completes without any such highly unstable intermediate.
- Thus Ts is much higher for C-3 & C-5 attack than C-4.

2010

So...
 Electrophilic attack takes place readily at neutral or alkaline media as pyrazole protonated pyrazole is more resistant to electrophilic attack

# Reactions

- 2. Electrophilic substitution to C
- a. Nitration
  O<sub>2</sub>N



Heterocyclic Compounds \_ AZC\_

2010

#### Reactions

Oxidation

4. Reduction



# Reactions 5. Ring opening

N-substituted pyrazole reacted with strong base (sodamide) cause ring opening

2010



Heterocyclic Compounds \_ AZC\_

#### Medicinal Use

 Many synthetic pyrazole compounds are of importance as dyes and medicines.

E.g.

Antipyrine - used as an antipyretic ,analgesic

Tartrazine - as a yellow dye for food

Phenylbutazone - an anti-inflammatory drug