
http://www.tutorialspoint.com/python/python_functions.htm Copyright © tutorialspoint.com

PYTHON FUNCTIONSPYTHON FUNCTIONS

A function is a block of organized, reusable code that is used to perform a single, related action.
Functions provide better modularity for your application and a high degree of code reusing.

As you already know, Python gives you many built-in functions like print, etc. but you can also
create your own functions. These functions are called user-defined functions.

Defining a Function
You can define functions to provide the required functionality. Here are simple rules to define a
function in Python.

Function blocks begin with the keyword def followed by the function name and parentheses (
).

Any input parameters or arguments should be placed within these parentheses. You can also
define parameters inside these parentheses.

The first statement of a function can be an optional statement - the documentation string of
the function or docstring.

The code block within every function starts with a colon : and is indented.

The statement return [expression] exits a function, optionally passing back an expression to
the caller. A return statement with no arguments is the same as return None.

Syntax

def functionname(parameters):
 "function_docstring"
 function_suite
 return [expression]

By default, parameters have a positional behavior and you need to inform them in the same order
that they were defined.

Example
The following function takes a string as input parameter and prints it on standard screen.

def printme(str):
 "This prints a passed string into this function"
 print str
 return

Calling a Function
Defining a function only gives it a name, specifies the parameters that are to be included in the
function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from another
function or directly from the Python prompt. Following is the example to call printme function −

#!/usr/bin/python

Function definition is here
def printme(str):
 "This prints a passed string into this function"
 print str
 return;

http://www.tutorialspoint.com/python/python_functions.htm

Now you can call printme function
printme("I'm first call to user defined function!")
printme("Again second call to the same function")

When the above code is executed, it produces the following result −

I'm first call to user defined function!
Again second call to the same function

Pass by reference vs value
All parameters arguments in the Python language are passed by reference. It means if you change
what a parameter refers to within a function, the change also reflects back in the calling function.
For example −

#!/usr/bin/python

Function definition is here
def changeme(mylist):
 "This changes a passed list into this function"
 mylist.append([1,2,3,4]);
 print "Values inside the function: ", mylist
 return

Now you can call changeme function
mylist = [10,20,30];
changeme(mylist);
print "Values outside the function: ", mylist

Here, we are maintaining reference of the passed object and appending values in the same object.
So, this would produce the following result −

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]
Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

There is one more example where argument is being passed by reference and the reference is
being overwritten inside the called function.

#!/usr/bin/python

Function definition is here
def changeme(mylist):
 "This changes a passed list into this function"
 mylist = [1,2,3,4]; # This would assig new reference in mylist
 print "Values inside the function: ", mylist
 return

Now you can call changeme function
mylist = [10,20,30];
changeme(mylist);
print "Values outside the function: ", mylist

The parameter mylist is local to the function changeme. Changing mylist within the function does
not affect mylist. The function accomplishes nothing and finally this would produce the following
result:

Values inside the function: [1, 2, 3, 4]
Values outside the function: [10, 20, 30]

Function Arguments
You can call a function by using the following types of formal arguments:

Required arguments

Keyword arguments

Default arguments

Variable-length arguments

Required arguments
Required arguments are the arguments passed to a function in correct positional order. Here, the
number of arguments in the function call should match exactly with the function definition.

To call the function printme, you definitely need to pass one argument, otherwise it gives a syntax
error as follows −

#!/usr/bin/python

Function definition is here
def printme(str):
 "This prints a passed string into this function"
 print str
 return;

Now you can call printme function
printme()

When the above code is executed, it produces the following result:

Traceback (most recent call last):
 File "test.py", line 11, in <module>
 printme();
TypeError: printme() takes exactly 1 argument (0 given)

Keyword arguments
Keyword arguments are related to the function calls. When you use keyword arguments in a
function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter is
able to use the keywords provided to match the values with parameters. You can also make
keyword calls to the printme function in the following ways −

#!/usr/bin/python

Function definition is here
def printme(str):
 "This prints a passed string into this function"
 print str
 return;

Now you can call printme function
printme(str = "My string")

When the above code is executed, it produces the following result −

My string

The following example gives more clear picture. Note that the order of parameters does not
matter.

#!/usr/bin/python

Function definition is here
def printinfo(name, age):
 "This prints a passed info into this function"
 print "Name: ", name

 print "Age ", age
 return;

Now you can call printinfo function
printinfo(age=50, name="miki")

When the above code is executed, it produces the following result −

Name: miki
Age 50

Default arguments
A default argument is an argument that assumes a default value if a value is not provided in the
function call for that argument. The following example gives an idea on default arguments, it
prints default age if it is not passed −

#!/usr/bin/python

Function definition is here
def printinfo(name, age = 35):
 "This prints a passed info into this function"
 print "Name: ", name
 print "Age ", age
 return;

Now you can call printinfo function
printinfo(age=50, name="miki")
printinfo(name="miki")

When the above code is executed, it produces the following result −

Name: miki
Age 50
Name: miki
Age 35

Variable-length arguments
You may need to process a function for more arguments than you specified while defining the
function. These arguments are called variable-length arguments and are not named in the
function definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):
 "function_docstring"
 function_suite
 return [expression]

An asterisk ∗ is placed before the variable name that holds the values of all nonkeyword variable
arguments. This tuple remains empty if no additional arguments are specified during the function
call. Following is a simple example −

#!/usr/bin/python

Function definition is here
def printinfo(arg1, *vartuple):
 "This prints a variable passed arguments"
 print "Output is: "
 print arg1
 for var in vartuple:
 print var
 return;

Now you can call printinfo function
printinfo(10)
printinfo(70, 60, 50)

When the above code is executed, it produces the following result −

Output is:
10
Output is:
70
60
50

The Anonymous Functions
These functions are called anonymous because they are not declared in the standard manner by
using the def keyword. You can use the lambda keyword to create small anonymous functions.

Lambda forms can take any number of arguments but return just one value in the form of an
expression. They cannot contain commands or multiple expressions.

An anonymous function cannot be a direct call to print because lambda requires an
expression

Lambda functions have their own local namespace and cannot access variables other than
those in their parameter list and those in the global namespace.

Although it appears that lambda's are a one-line version of a function, they are not
equivalent to inline statements in C or C++, whose purpose is by passing function stack
allocation during invocation for performance reasons.

Syntax
The syntax of lambda functions contains only a single statement, which is as follows −

lambda [arg1 [,arg2,.....argn]]:expression

Following is the example to show how lambda form of function works −

#!/usr/bin/python

Function definition is here
sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function
print "Value of total : ", sum(10, 20)
print "Value of total : ", sum(20, 20)

When the above code is executed, it produces the following result −

Value of total : 30
Value of total : 40

The return Statement
The statement return [expression] exits a function, optionally passing back an expression to the
caller. A return statement with no arguments is the same as return None.

All the above examples are not returning any value. You can return a value from a function as
follows −

#!/usr/bin/python

Function definition is here
def sum(arg1, arg2):
 # Add both the parameters and return them."
 total = arg1 + arg2
 print "Inside the function : ", total
 return total;

Now you can call sum function
total = sum(10, 20);
print "Outside the function : ", total

When the above code is executed, it produces the following result −

Inside the function : 30
Outside the function : 30

Scope of Variables
All variables in a program may not be accessible at all locations in that program. This depends on
where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a particular
identifier. There are two basic scopes of variables in Python −

Global variables

Local variables

Global vs. Local variables
Variables that are defined inside a function body have a local scope, and those defined outside
have a global scope.

This means that local variables can be accessed only inside the function in which they are
declared, whereas global variables can be accessed throughout the program body by all functions.
When you call a function, the variables declared inside it are brought into scope. Following is a
simple example −

#!/usr/bin/python

total = 0; # This is global variable.
Function definition is here
def sum(arg1, arg2):
 # Add both the parameters and return them."
 total = arg1 + arg2; # Here total is local variable.
 print "Inside the function local total : ", total
 return total;

Now you can call sum function
sum(10, 20);
print "Outside the function global total : ", total

When the above code is executed, it produces the following result −

Inside the function local total : 30
Outside the function global total : 0

Loading [MathJax]/jax/output/HTML-CSS/jax.js

